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Abstract: The Stern-Gerlach experiment, a seminal quantum physics experiment, demonstrated
the intriguing phenomenon of particle spin quantization, leading to applications in matter-wave
interferometry and weak-value measurements. Over the years, several optical experiments have
exhibited similar behavior to the Stern-Gerlach experiment, revealing splitting in both spatial
and angular domains. Here we show, theoretically and experimentally, that the Stern-Gerlach
effect can be extended into the time and frequency domains. By harnessing Kerr nonlinearity
in optical fibers, we couple signal and idler pulses using two pump pulses, resulting in the
emergence of two distinct eigenstates whereby the signal and idler are either in phase or out of
phase. This nonlinear coupling emulates a synthetic magnetization, and by varying it linearly in
time, one eigenstate deflects towards a higher frequency, while the other deflects towards a lower
frequency. This effect can be utilized to realize an all-optical, phase-sensitive frequency beam
splitter, establishing a new paradigm for classical and quantum data processing of frequency-bin
superposition states.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The Stern-Gerlach (SG) experiment [1–9] is a pillar in quantum physics, providing compelling
evidence for the quantum behavior of the spin angular momentum of the electron. In that
experiment, a beam of silver atoms passing through a non-uniform transverse magnetic field was
split into two distinct directions, representing the two eigenstates of this system, where the spin is
either parallel or anti-parallel to the direction of the magnetic field gradient. Several SG-type
experiments have been proposed and conducted using light waves [10–19], exhibiting splitting
effects like the original SG experiment. Recently, several studies have developed theoretical
frameworks [20,21] and demonstrated [22,23] SG-type experiments in the field of nonlinear optics,
specifically in the context of χ(2) three waves mixing. These studies have revealed the splitting
of an input signal (or idler) beam into two distinct directions, representing the two eigenstates of
the system. These works relied on second order nonlinearity in non-centro-symmetric crystals
and resulted in splitting in the space/spatial-frequency domain. Here instead, we report a
SG-type splitting in the time/temporal-frequency domain, based on a third order nonlinear effect
(four-wave mixing) in optical fibers.

The underlying dynamics of all the above-mentioned systems is that of coupled two-level
system. In the case of sum frequency generation in nonlinear crystals, the (undepleted) pump
couples between the signal and idler [24–28], whereas in the case of four-wave mixing (FWM) in
optical fibers, two undepleted pumps couple between them [29–32]. This enabled to observe
effects such as adiabatic frequency conversion, and accumulation of adiabatic geometric phase,
first in quadratic nonlinear systems [24,25,33,34] and more recently using FWM [29,30,32,35].
An important difference, however, is that the interacting beams in bulk nonlinear crystals undergo
diffraction, whereas in fibers we consider interacting pulses that undergo dispersion.

Here we utilize the analogy between diffraction and dispersion phenomena [36–38] to analyze
and demonstrate a temporal SG-type experiment, enabling the all-optical control of the splitting
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of signals in the time-frequency domain, using commercially available telecom components (see
Fig. 1). The observation of this SG-like effect has significant potential for data manipulation in
both the classical and quantum optical regimes. In the classical regime, the ability to shift a pair
of pulses spectrally or temporarily can be beneficial for optical signal processing applications. In
the quantum regime, it opens the door for creation and splitting of frequency bin entangled states
[30–32,39–45], based on their relative phase. These states are highly important for quantum
information processing since they represent the outputs of a Hadamard gate when the input is
either a photon at the signal frequency or the idler frequency.
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Fig. 1. The principle of the all-optical Stern-Gerlach effect in the time domain. Two pump tones within a common 
ramp pulsed envelope (red line) couple light between signal and idler pulses. This interaction gives rise to two distinct 
eigenstates (blue and orange lines), where the signal and idler exhibit the same phase in one eigenstate and opposite 
phases in the other eigenstate (see bottom right illustration). As these pulses propagate in the fiber, the eigenstates 
experience frequency domain splitting (right side) and subsequently, temporal splitting into opposite directions (left 
side) owing to their propagation in the dispersive fiber. 

2. Results
2.1 Theoretical analysis 
Two strong optical pump pulses propagating in a nonlinear material can couple between 
relatively weak signal and idler pulses [29-32,42], under the energy conservation condition 𝜔𝑝1
― 𝜔𝑝2 = 𝜔𝑖 ― 𝜔𝑠 where 𝜔𝑝1,𝜔𝑝2,𝜔𝑖,𝜔𝑠 represent the angular frequencies of the two pumps, 
idler and signal, respectively. Neglecting common phase changes between the signal and idler 
via cross phase modulation (XPM) and, assuming undepleted pumps (see Supplementary 

Fig. 1. The principle of the all-optical Stern-Gerlach effect in the time domain. Two pump
tones within a common ramp pulsed envelope (red line) couple light between signal and
idler pulses. This interaction gives rise to two distinct eigenstates (blue and orange lines),
where the signal and idler exhibit the same phase in one eigenstate and opposite phases in
the other eigenstate (see bottom right illustration). As these pulses propagate in the fiber, the
eigenstates experience frequency domain splitting (right side) and subsequently, temporal
splitting into opposite directions (left side) owing to their propagation in the dispersive fiber.

2. Results

2.1. Theoretical analysis

Two strong optical pump pulses propagating in a nonlinear material can couple between
relatively weak signal and idler pulses [29–32,42], under the energy conservation condition
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ωp1 − ωp2 = ωi − ωs where ωp1,ωp2,ωi,ωs represent the angular frequencies of the two pumps,
idler and signal, respectively. Neglecting common phase changes between the signal and idler via
cross phase modulation (XPM) and, assuming undepleted pumps (see Supplementary section),
the evolution of the signal and idler wavepackets can be described by the coupled wave equations
(CWE) [46,47].

∂2
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Here Ap1, Ap2, Ai, As represent the slowly varying complex envelopes of the two pumps, idler,
and signal waves, respectively. The variable τ = t − z/Vg denotes the retarded time frame,
i.e. the time delay it takes for the signal and idler to travel a distance of z at a group velocity
of Vg, where z is the propagation coordinate. The above two equations therefore describe
the evolution of the signal and idler wavepackets in a frame that moves at the group velocity.
Assuming that the spectral separation between the signal and idler waves is sufficiently small,
the group velocity dispersion (GVD) parameters, β2, and Vg remain identical for both waves.
The Kerr nonlinear coefficient, γ, is expressed in units of W−1m−1, and ∆k = kp1 − kp2 + ks − ki
denotes the wavenumber mismatch term, where kp1, kp2, ks, ki are the wavenumbers of the two
pumps, signal, and idler, respectively. By introducing normalized fields in the rotating frame,
ψi/s = (|Ai |

2 + |As |
2)−

1
2 exp(∓i∆kz/2)Ai/s, the CWEs can be written in matrix form, with position
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In Eq. (3), pτ = − ∂
∂τ represents the temporal equivalent of the momentum operator, σ⃗ =

(σx, σy ,σz) represents the Pauli matrix vector, and the temporal synthetic magnetism [27],
M⃗ = 2|γAp1A∗

p2 |(x̂ cos(ϕ) + ŷ sin(ϕ)) + ẑ∆k/2 is defined by the phase differenceϕ = ϕp2 − ϕp1
between the two pumps. Equation (3) is mathematically equivalent to the transverse Pauli equation,
which describes a nonrelativistic spin ½ particle subjected to a weak transverse magnetic field
(as used in the original Stern-Gerlach experiment1). The key distinction between the transverse
Pauli equation and Eq. (3) lies in the exchange between time and position (see Supplementary
section for details). Consequently, in the case of time dependent synthetic magnetism, we can
anticipate temporal and frequency splitting rather than direction and spatial splitting.

In order to realize the all-optical SG effect in the time domain, a phase matching condition
must be satisfied, and the synthetic magnetism M⃗ should exhibit a uniform temporal slope that
overlaps with the signal and idler pulses. This can be achieved by modulating the pump pulses
in a manner similar to a ramp pulse, which has a duration longer than that of the signal and
idler pulses. This modulation allows the synthetic magnetism absolute value to be approximated
by a first-order Taylor series, represented as |M⃗ | = M0 +M′τ. In Fourier space Eq. (3) can be
diagonalized, resulting in two eigenstates:

|ψ+⟩ =
|ψs⟩ + e−iφ |ψi⟩

√
2

, |ψ−⟩ =
|ψs⟩ − e−iφ |ψi⟩

√
2

(4)

Here, spinor and bra-ket notations have been employed. Note that the signal-only |ψs⟩ (or
idler only |ψi⟩) wavepackets are not eigenstates of this system. Generally, the incident spinor
|ψincident⟩ in the frequency domain can be expressed as a superposition of the eigenstates:
|ψincident⟩ = (cos(θ)exp(iδ)|ψ+⟩ + sin(θ)|ψ−⟩) ⊗ ∫ dω ai(ω)|ω⟩. Where δ is an arbitrary phase,
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ai(ω) represents the Fourier space envelope for the signal and idler components, typically modeled
as Gaussian pulses with ai(ω) = A0

(︁√
π ∆ω

)︁−1 exp(−ω2/2∆ω2), where ∆ω denotes the pulse
bandwidth. The spinor as function of propagation coordinate z can be expressed in terms of the ef-
fective propagator, exp(−izH±), as |ψ⟩(z,ω) = (exp(−izH+)|ψ+⟩⟨ψ+ | + exp(−izH−)|ψ−⟩⟨ψ− |)|ψincident⟩,
where H± = −

β2
2 ω

2 ∓ 1
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∂ω denote the two effective Hamiltonians corresponding to the
two eigenstates of Eq. (5). The propagator itself can be calculated using Zassenhaus formula
[21,48]:
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Here the term exp
(︂
±zM′ ∂

∂ω

)︂
is the translation operator in the Fourier space. Therefore, the

optical angular frequency of the first eigenstate |ψ+⟩ increases by zM′, while decreasing by the
same amount for the second eigenstate |ψ−⟩. Consequently, when the incident spinor |ψincident⟩ is
not a pure eigenstate but rather a superposition of the two eigenstates, the spectrum will split
into two shifted spectra (up-shifted and down-shifted). The intensity of each spectrum will
depend on the relative weight of the corresponding eigenstate in the incident spinor. The term
exp(∓iβ2z2M′ω/2) introduces a time shift with direction that varies with the eigenstates. Hence,
in the case of an incident spinor that is a superposition of the eigenstates (e.g., a signal only, or
idler only spinor), the pulses will exhibit temporal splitting. The term exp(∓izM0/2) represents a
different phase accumulation for each eigenstate that may create Rabi oscillations between the
signal and the idler, that are characteristic phenomenon of two-level systems. These oscillations
result from interference between the two eigenstates, hence, when the incident spinor is a pure
eigenstate there is no oscillation.

Figure 2 displays a simulation illustrating the impact of the translation operator in the frequency
domain and the Rabi oscillation of the signal and idler over a length of 8 times the characteristic
nonlinear length [46], LNL = 1/γPp where Pp represents the geometric mean of the power of the
pumps that overlaps with the signal and idler. The slope was 2.5 W ·ns−1. The simulation assumes
|Ap1 | = |Ap2 | and ignores second order effects, in order to clarify the role of the components
in the propagator. Panels (a) and (b) show the power spectral density (PSD) of the signal or
idler when the spinor state is |ψ+⟩ and |ψ−⟩, respectively. The dashed white line, featured in all
panels, indicates the frequency shift in the presence of XPM only, ∆fXPM = M′L/π, excluding
the temporal SG effect. The insets in all the figures present the PSD, as function of frequency, at
z = 1.85LNL (marked by a dashed pink line). Comparing panels (a) and (b) demonstrates how
each eigenstate undergoes a frequency shift of the same magnitude but in the opposite direction,
while the envelope of the PSD remains unchanged. The frequency shifts are determined by the
XPM and temporal SG effects ∆f = ∆fSPM ± M′L/2π. Panels (c) and (d) present the normalized
PSD of the idler and signal, respectively, where the incident spinor is an equal superposition of the
two eigenstates (the phase between signal and idler φ, equal 90 degrees), resulting in observable
splitting in the frequency domain. Notably, in addition to the frequency splitting, the simulation
also demonstrates the presence of Rabi oscillations between the signal and the idler in the initial
stages. However, as the length L exceeds 4LNL, the frequency splitting becomes substantial,
resulting in a lack of spectral overlap between the two eigenstates and, consequently, the decay
of the Rabi oscillations. It should be noted that the frequency domain splitting presented in
Fig. 2 and throughout the article is analogous to the splitting observed in the transverse spatial
frequency (k) space in the original SG experiment. In the original SG experiment, the silver atom
beams were measured at a distance from the magnetic field, effectively capturing the splitting in
the k space, caused by the magnetic field gradient.
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magnetic field, effectively capturing the splitting in the k space, caused by the magnetic field 
gradient.

Fig. 2 . Simulated signal and idler PSD along distance. a, the signal (or idler) in the eigenstate |𝜓+⟩ exhibits a linear 
frequency-shift with length, the shift is higher than the XPM frequency shift, illustrated by the dashed white line. The 
envelope of the PSD remains constant during propagation. The inset shows the calculated PSD at 𝐿 = 1.85𝐿𝑁𝐿 (marked 
with a dashed pink line). b, similar to panel (a) but for the eigenstate |𝜓―⟩, demonstrating a linear frequency shift that 
is lower than the XPM frequency shift. (c) and (d), signal and idler PSD, respectively, in the eigenstates’ superposition 
(|𝜓+⟩ + 𝑖|𝜓―⟩) 2. The spectra exhibit splitting corresponding to the two eigenstates (showcased in panels (a) and (b)). 
Prior to the splitting, when the two eigenstates overlap in frequency, Rabi oscillation between the signal and idler is 
observed.

2.2 Experimental results 
The experimental demonstration of the all-optical Stern-Gerlach effect in the time domain was 
conducted, and the corresponding setup and procedures are described in the Methods section. 
The employed pumps' wavelength was approximately 1552 nm, with a frequency spacing of 
10 GHz between the two pumps. The total duration of the pump pulses was 3.8 ns. Their 
envelopes were tailored such that they included a linear power ramp in a 2ns time interval that 
overlapped with the signal and the idler. (see Fig. 6b in the Methods section). The signal and 
idler wavelengths were around 1550 nm, while their frequency difference matched that of the 
two pump pulses. The signal and idler pulses were generated as Gaussian waveforms, 
characterized by a full width at half maximum (FWHM) of 1 ns. The phase difference (𝜑) 
between the signal and idler waves could be controlled, thus generating a spinor that is either 
one of the two eigenstates or any superposition of them.

The nonlinear medium employed in the experiment was a standard single-mode telecom fiber 
with a length of 1 km. The investigation of the optical frequency shifts for both the signal and 
the idler relied on the technique of self-heterodyne detection [49]. However, the temporal shift 

Fig. 2. Simulated signal and idler PSD along distance. a, the signal (or idler) in the
eigenstate |ψ+⟩ exhibits a linear frequency-shift with length, the shift is higher than the
XPM frequency shift, illustrated by the dashed white line. The envelope of the PSD remains
constant during propagation. The inset shows the calculated PSD at L = 1.85LNL (marked
with a dashed pink line). b, similar to panel (a) but for the eigenstate |ψ−⟩, demonstrating a
linear frequency shift that is lower than the XPM frequency shift. (c) and (d), signal and idler
PSD, respectively, in the eigenstates’ superposition (|ψ+⟩ + i|ψ−⟩)/2. The spectra exhibit
splitting corresponding to the two eigenstates (showcased in panels (a) and (b)). Prior to the
splitting, when the two eigenstates overlap in frequency, Rabi oscillation between the signal
and idler is observed.

2.2. Experimental results

The experimental demonstration of the all-optical Stern-Gerlach effect in the time domain was
conducted, and the corresponding setup and procedures are described in the Methods section. The
employed pumps’ wavelength was approximately 1552 nm, with a frequency spacing of 10 GHz
between the two pumps. The total duration of the pump pulses was 3.8 ns. Their envelopes were
tailored such that they included a linear power ramp in a 2 ns time interval that overlapped with
the signal and the idler. (see Fig. 6(b) in the Methods section). The signal and idler wavelengths
were around 1550 nm, while their frequency difference matched that of the two pump pulses.
The signal and idler pulses were generated as Gaussian waveforms, characterized by a full width
at half maximum (FWHM) of 1 ns. The phase difference (φ) between the signal and idler waves
could be controlled, thus generating a spinor that is either one of the two eigenstates or any
superposition of them.

The nonlinear medium employed in the experiment was a standard single-mode telecom fiber
with a length of 1 km. The investigation of the optical frequency shifts for both the signal and
the idler relied on the technique of self-heterodyne detection [49]. However, the temporal shift
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was too minute to be detected under the prevailing experimental conditions. This scenario
resembles the original Stern-Gerlach experiment, where the screen was placed at a significant
distance from the magnetic field, facilitating the detection of changes in momentum direction
rather than alterations in spatial configuration within the magnetic field. Figure 3 presents the
experimental and simulated PSD of the signal (left side) and idler (right side) as a function of
frequency deviation from the carrier. Note that neither of these two states is an eigenstate of the
system. The pump peak power was 700 mW with slope of approximately 0.35 W · ns−1. The
data have been normalized, with the maximum PSD set to 1. The solid blue line represents
the experimental results, while the dashed red line corresponds to the simulation. There is a
close agreement between the experimental and simulated outcomes. The traces in panel (a)
reveal that the spectrum of the pure state |ψ+⟩ (Assuming, without loss of generality, a pump
phase difference of ϕ = 0, yields φ=0) undergoes a shift towards higher frequencies by 0.27 GHz
compared to the pure state |ψ−⟩ (φ = 180 degrees) observed in panel (c). For all superpositions
of the eigenstates, the spectrum exhibits dependence on the relative weighting of each eigenstate,
which in turn is influenced by the phase (panels (b), (d)). In panel (b) (φ = 80 degrees), it is
observed that the idler component experiences destructive interference between the two spectra

was too minute to be detected under the prevailing experimental conditions. This scenario 
resembles the original Stern-Gerlach experiment, where the screen was placed at a significant 
distance from the magnetic field, facilitating the detection of changes in momentum direction 
rather than alterations in spatial configuration within the magnetic field. Fig. 3 presents the 
experimental and simulated PSD of the signal (left side) and idler (right side) as a function of 
frequency deviation from the carrier. Note that neither of these two states is an eigenstate of the 
system. The pump peak power was 700 mW with slope of approximately 0.35 𝑊 ∙ 𝑛𝑠―1. The 
data have been normalized, with the maximum PSD set to 1. The solid blue line represents the 
experimental results, while the dashed red line corresponds to the simulation. There is a close 
agreement between the experimental and simulated outcomes. The traces in panel (a) reveal 
that the spectrum of the pure state |𝜓+⟩ (Assuming, without loss of generality, a pump phase 
difference of 𝜙 = 0, yields 𝜑=0) undergoes a shift towards higher frequencies by 0.27 GHz 
compared to the pure state |𝜓―⟩ (𝜑 = 180 degrees) observed in panel (c). For all 
superpositions of the eigenstates, the spectrum exhibits dependence on the relative weighting 
of each eigenstate, which in turn is influenced by the phase (panels (b), (d)). In panel (b) (
𝜑 = 80 𝑑𝑒𝑔𝑟𝑒𝑒𝑠), it is observed that the idler component experiences destructive interference 
between the two spectra corresponding to the two eigenstates, whereas the signal component 
demonstrates constructive interference. Conversely, in panel (d) (𝜑 = 260 𝑑𝑒𝑔𝑟𝑒𝑒𝑠), the 
opposite behavior is observed. This phenomenon arises due to the Rabi oscillation occurring 
between the signal and idler components. In addition to the splitting observed between the two 
eigenstates, there is a frequency shift that is common to both eigenstates. This shift is attributed 
to the common XPM induced by the pumps on both the signal and idler components. Note that 
the phenomena depicted in this figure are consistent with those observed in the insets of Fig. 2.

Fig 3 . Experimental and simulation results of the PSD of the signal and idler at various phase differences. The 
horizontal axis represents the frequency distance from the optical carrier. Each panel shows the signal on the left and 
the idler on the right. The blue line represents the experimental data, while the dashed red line corresponds to the 
simulation results. a, phase different between the signal and the idler 𝜑 = 0 degrees corresponding to the eigenstate |
𝜓+⟩. b, phase difference  𝜑 = 80 degrees, which is not an eigenstate of the system, resulting in a varying PSD envelope. 
The idler exhibits constructive interference between the two eigenstates, while the signal demonstrates destructive 
interference via Rabi oscillation. c, Phase difference 𝜑 = 180 degrees, corresponding to the eigenstate |𝜓+⟩. The 
dashed green lines illustrate the frequency distance between the two eigenstates in panels (a) and (c) caused by SG 

Fig. 3. Experimental and simulation results of the PSD of the signal and idler at various
phase differences. The horizontal axis represents the frequency distance from the optical
carrier. Each panel shows the signal on the left and the idler on the right. The blue line
represents the experimental data, while the dashed red line corresponds to the simulation
results. a, phase different between the signal and the idler φ = 0 degrees corresponding to
the eigenstate |ψ+⟩. b, phase difference φ = 80 degrees, which is not an eigenstate of the
system, resulting in a varying PSD envelope. The idler exhibits constructive interference
between the two eigenstates, while the signal demonstrates destructive interference via Rabi
oscillation. c, Phase difference φ = 180 degrees, corresponding to the eigenstate |ψ+⟩. The
dashed green lines illustrate the frequency distance between the two eigenstates in panels (a)
and (c) caused by SG splitting. d, Phase difference φ = 260 degrees, similar to panel (b),
this is not an eigenstate of the system. However, in this case the signal shows constructive
interference, while the idler experiences destructive interference.
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Fig. 4. Experimental and simulation results of the spectral deflection of the eigenstates’
PSD. In panels a-d the horizontal axis is the same as Fig. 3, in the left side is the signal
and in the right side is the idler. The blue lines represent the eigenstate |ψ+⟩, while the red
lines exhibit the eigenstate |ψ−⟩. The solid lines are experiments and the dashed lines are
simulation. a, the peak power was 270 mW and the frequency offset between the eigenstates
is 0.08 GHz. b, the peak power was 440 mW and the frequency offset between the eigenstates
is 0.13 GHz. c, the peak power was 710 mW and the frequency offset between the eigenstates
is 0.27 GHz. d, the peak power was 950 mW and the frequency offset between the eigenstates
is 0.4 GHz. e, the frequency splitting is plotted against the pump peak power. The solid blue
line represents the theoretical model, while the red markers correspond to the data obtained
from the panels shown above.
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corresponding to the two eigenstates, whereas the signal component demonstrates constructive
interference. Conversely, in panel (d) (φ = 260 degrees), the opposite behavior is observed. This
phenomenon arises due to the Rabi oscillation occurring between the signal and idler components.
In addition to the splitting observed between the two eigenstates, there is a frequency shift that is
common to both eigenstates. This shift is attributed to the common XPM induced by the pumps
on both the signal and idler components. Note that the phenomena depicted in this figure are
consistent with those observed in the insets of Fig. 2.

Figure 4 shows the experimental and simulated PSD of the two eigenstates, as a function
of pump power, with the blue lines corresponding to |ψ+⟩ and the red line to |ψ−⟩. The left
side of the figure represents the signal component, while the right side corresponds to the idler
component. The solid line represents the experimental results, while the dashed line corresponds
to the simulation.

In panel (a), where the pump power is low (270 mW), the observed splitting is minimal. As
the pump power increases, as in panels (b) and (c) the spectrum progressively splits into two
distinct spectral peaks. Panel (d) demonstrates a splitting measurement of 0.4 GHz at a peak
pump power of 950 mW. Panel (e) shows the theoretical frequency splitting as a function of
pump power (indicated by a blue line), while the experimentally observed splitting is presented
in panels (a-d) using red markers. The theoretical and experimental observations demonstrate
close agreement. This observed splitting is a clear manifestation of an all-optical Stern-Gerlach
effect in the time domain.

3. Discussion

In the above measurements, we showed that the frequency splitting between the two eigenstates
increases with pump power. However, there is a practical limit to it. As the pump power increases,
(unwanted) high order tones of the signal and idler appear. This limits the pump power level
and consequently the frequency shift. One potential solution to overcome this challenge is
to replace the standard telecom fiber with a dispersion-engineered fiber or dispersion shifted
fiber and adjusting the wavelength to achieve phase matching with the signal and idler, while
avoiding phase matching with high order tones [30,32,42]. Another approach is to explore the
use of multimode fibers or polarization maintaining fibers. The phase accumulation can be
adjusted using the intensity-dependent refractive index [47], which has the potential to enable
phase matching only for the signal and idler components while the high order tones are not
phase-matched. By employing these strategies, the adverse impact of high order tones can be
mitigated, thereby enhancing the overall effectiveness of the system. Operating at pump powers
levels, beyond the undepleted pump approximation [28], is another future direction to achieve
high efficiency.

The pulses of the pump signal and idler that we utilized in this study had a duration on
the nanosecond scale. These durations are already comparable to those used in state-of-the-
art Quantum Key Distribution (QKD) [50]. Moreover, it is possible to further reduce the
pulse durations by one order of magnitude, to match those of typical of high-speed optical
communications. In that case, the spectral linewidth of the signal and idler would increase, but
the corresponding pump’s slope would also increase, consequently, the deflection of the signal
and idler would increase. Thus, the crucial point to note is that the frequency deflection (or
splitting) relative to the spectral linewidth of the pulses would remain unchanged.

The utilization of phase-sensitive frequency shifting, as analyzed and demonstrated in our
study, introduces new capabilities for manipulating frequency-encoded optical information. It
acts as a frequency-bin splitter, which exhibits sensitivity to phase and can be controlled by
pump pulses. These features open interesting potential applications in the fields of classical
optics and quantum optics. Specifically, it may enable frequency domain Hong–Ou–Mandel
bunching of distinguishable signal and idler photons [20,40–43]. By sending an input state
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(|1i1s⟩) into the temporal SG system, these photons will bunch to one of the two eigenstates,
(|2+0−⟩ + |0+2−⟩) /

√
2, where |2±⟩ denote two photons (idler and signal photons) in the eigenstates

|±⟩.
The Hadamard gate, transforming two orthogonal input states |0⟩, |1⟩ to new orthogonal

output states in a mutually unbiased base (|0⟩ + |1⟩)/
√

2, (|0⟩ − |1⟩)/
√

2, plays a crucial role
in enabling quantum algorithms to simultaneously explore multiple possibilities and extract
valuable information efficiently [51,52]. However, directly detecting the state of a single basis in
the Hadamard basis in the frequency-bin is challenging. To address this, the Stern-Gerlach effect
in the time domain, which is sensitive to phase and can distinguish between the two orthogonal
base vectors of the Hadamard basis, may be employed. Figure 5 provides a schematic illustration
of this effect. Since frequency-bin quantum information processing and communication are
well-suited for transmission in SMF, the ability to apply the temporal Stern-Gerlach effect in
SMF is significant.

(|2+0―⟩ + |0+2―⟩)/ 2, where |2±⟩ denote two photons (idler and signal photons) in the 
eigenstates | ± ⟩. 

The Hadamard gate, transforming two orthogonal input states |0⟩,|1⟩ to new orthogonal output 
states in a mutually unbiased base (|0⟩ + |1⟩)/ 2  , (|0⟩ ― |1⟩)/ 2, plays a crucial role in 
enabling quantum algorithms to simultaneously explore multiple possibilities and extract 
valuable information efficiently [51,52]. However, directly detecting the state of a single basis 
in the Hadamard basis in the frequency-bin is challenging. To address this, the Stern-Gerlach 
effect in the time domain, which is sensitive to phase and can distinguish between the two 
orthogonal base vectors of the Hadamard basis, may be employed. Fig. 5 provides a schematic 
illustration of this effect. Since frequency-bin quantum information processing and 
communication are well-suited for transmission in SMF, the ability to apply the temporal Stern-
Gerlach effect in SMF is significant.

4. Summary

In this paper, we present the first analysis and demonstration of SG splitting in the time-
frequency domain. Our study establishes an analogy between the Pauli equation and the signal-
idler coupling via two pump pulses (equation (3)) in a Kerr nonlinear media. We show that a 
time-dependent nonlinear coupling gradient, that may be induced by the time gradient of the 
pump pulses, results in an optical frequency shift. The direction of the shift depends on the 
phase difference between the signal and the idler, while the magnitude of the shift is determined 
by the strength of the nonlinear coupling gradient and the length of the nonlinear material. 
Notably, this is the first analysis of an SG-type experiment in the context of third order 
nonlinearity. Since 𝜒(3) exists in centrosymmetric materials, including silicon and silica, this 
phenomenon can be observed in standard silica optical fibers, allowing for exploitation of long 
lengths of nonlinear interaction. Moreover, it may also enable to observe it in integrated-optics 
platforms, e.g., in silicon-photonics devices. Potential application of the temporal SG effect are 
in classical and quantum optical communication systems. In particular, this effect enables to 
split orthogonal frequency bin qubits in the Hadamard basis.

Fig. 5. Illustration of temporal SG effect for the Hadamard basis in the frequency-bin. a, (a) When a photon is initially 

in the |1⟩ state at the input of the Hadamard gate, it undergoes a transformation to the (|0⟩ ― |1⟩)/ 2     state. The 
temporal SG effect causes a deflection of the photon towards lower frequencies. b, Conversely, when a photon is 

initially in the |0⟩ state at the input of the Hadamard gate, it undergoes a transformation to the (|0⟩ + |1⟩)/ 2 state. 
The temporal SG effect causes a deflection of the photon towards higher frequencies.

5. Methods

Fig. 5. Illustration of temporal SG effect for the Hadamard basis in the frequency-bin. a, (a)
When a photon is initially in the |1⟩ state at the input of the Hadamard gate, it undergoes a
transformation to the (|0⟩ − |1⟩)/

√
2 state. The temporal SG effect causes a deflection of the

photon towards lower frequencies. b, Conversely, when a photon is initially in the |0⟩ state
at the input of the Hadamard gate, it undergoes a transformation to the (|0⟩ + |1⟩)/

√
2 state.

The temporal SG effect causes a deflection of the photon towards higher frequencies.

4. Summary

In this paper, we present the first analysis and demonstration of SG splitting in the time-frequency
domain. Our study establishes an analogy between the Pauli equation and the signal-idler
coupling via two pump pulses (Eq. (3)) in a Kerr nonlinear media. We show that a time-dependent
nonlinear coupling gradient, that may be induced by the time gradient of the pump pulses, results
in an optical frequency shift. The direction of the shift depends on the phase difference between
the signal and the idler, while the magnitude of the shift is determined by the strength of the
nonlinear coupling gradient and the length of the nonlinear material. Notably, this is the first
analysis of an SG-type experiment in the context of third order nonlinearity. Since χ(3) exists in
centrosymmetric materials, including silicon and silica, this phenomenon can be observed in
standard silica optical fibers, allowing for exploitation of long lengths of nonlinear interaction.
Moreover, it may also enable to observe it in integrated-optics platforms, e.g., in silicon-photonics
devices. Potential applications of the temporal SG effect are in classical and quantum optical
communication systems. In particular, this effect enables to split orthogonal frequency bin qubits
in the Hadamard basis.
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5. Methods

5.1. Setup

The experimental setup used in demonstration of the all-optical Stern-Gerlach effect in the
time domain is illustrated in Fig. 6 (a). A tunable laser diode at 1552 nm wavelength and
100 kHz linewidth served as the source of pumps light. The light was modulated into repeating
ramp-shaped pulses of approximately 2 ns (see Fig. 6 (b)) duration and 35 ns period using
an electro-optic amplitude modulator. The pumps pulses were subsequently amplified by a
pre-amp erbium-doped fiber amplifier (EDFA). The pump pulses were then modulated again
with electro-optic amplitude modulator, driven by a sine wave at frequency of Ω = 5 GHz. The
modulator is biased for carrier suppression. Consequently, the modulator output comprised two
ramp pulses separated by a frequency difference of 10 GHz (see Fig. 6 (c)).

5.1 Setup
The experimental setup used in demonstration of the all-optical Stern-Gerlach effect in the time 
domain is illustrated in Fig. 6 (a). A tunable laser diode at 1552 nm wavelength and 100 kHz 
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erbium-doped fiber amplifier (EDFA). The pump pulses were then modulated again with 
electro-optic amplitude modulator, driven by a sine wave at frequency of Ω = 5 GHz. The 
modulator is biased for carrier suppression. Consequently, the modulator output comprised two 
ramp pulses separated by a frequency difference of 10 GHz (see Fig.6 (c)). 

Fig. 6: Schematic illustration of the experimental setup. a, Pump light from a diode laser is initially modulated by an 
Electro-optic amplitude modulator (EOM) to generate a ramp pulse. The pulse is then amplified by an erbium-doped 
fiber amplifier (EDFA) and further modulated with a sine wave of Ω=2π∙5GHz using a second EOM biased for carrier 
suppression. The signal and idler light from a fiber laser are modulated by another EOM to generate Gaussian pulses 
and then modulated by a fourth EOM under the same conditions as the second EOM, with the tunable phase of the sine 
wave. The pump, signal, and idler are combined and amplified using EDFA. After combining the four tones, the light 
is coupled to a 1 km fiber. The combined light is then combined with a local oscillator (LO) replica of the signal and 
idler fiber lasers. Optical bandpass filters (BPF) are utilised to filter out the pumps and the signal/idler, and the LO and 
idler/signal are detected by fast photoreceivers and digitised using an oscilloscope. b, shows the measurement of the 
envelopes of the signal, idler, and pump pulses. c, provides a schematic illustration of their frequency domains and 
energy conservation.

A fiber laser operating at a wavelength of 1550 nm and with a linewidth of 1 kHz was split into 
two paths. The light in one arm served as the source for the signal and idler. Using another 
electro-optic amplitude modulator, the light was modulated into repeating Gaussian pulses with 
FWHM of 1 ns, matching the period of the pump pulses (see Fig.6 (b)). Similar to the pump 
pulses, the signal and idler pulses were subsequently modulated using an electro-optic 
amplitude modulator, biased for carrier suppression and driven by a sine wave at a fixed 

Fig. 6. Schematic illustration of the experimental setup. a, Pump light from a diode
laser is initially modulated by an Electro-optic amplitude modulator (EOM) to generate a
ramp pulse. The pulse is then amplified by an erbium-doped fiber amplifier (EDFA) and
further modulated with a sine wave of Ω=2π·5 GHz using a second EOM biased for carrier
suppression. The signal and idler light from a fiber laser are modulated by another EOM to
generate Gaussian pulses and then modulated by a fourth EOM under the same conditions as
the second EOM, with the tunable phase of the sine wave. The pump, signal, and idler are
combined and amplified using EDFA. After combining the four tones, the light is coupled to
a 1 km fiber. The combined light is then combined with a local oscillator (LO) replica of
the signal and idler fiber lasers. Optical bandpass filters (BPF) are utilised to filter out the
pumps and the signal/idler, and the LO and idler/signal are detected by fast photoreceivers
and digitised using an oscilloscope. b, shows the measurement of the envelopes of the signal,
idler, and pump pulses. c, provides a schematic illustration of their frequency domains and
energy conservation.

A fiber laser operating at a wavelength of 1550 nm and with a linewidth of 1 kHz was split
into two paths. The light in one arm served as the source for the signal and idler. Using another
electro-optic amplitude modulator, the light was modulated into repeating Gaussian pulses with
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FWHM of 1 ns, matching the period of the pump pulses (see Fig. 6 (b)). Similar to the pump
pulses, the signal and idler pulses were subsequently modulated using an electro-optic amplitude
modulator, biased for carrier suppression and driven by a sine wave at a fixed frequency of
Ω = 5 GHz and with adjustable phase. Consequently, the modulator output consisted of two
gaussian pulses separated by a frequency difference of 10 GHz and a controllable phase difference,
where the higher frequency pulse was designated as the idler and the other pulse as the signal.

The signal and idler pulses were combined with the pump pulses, aligning them on the
slope of the pump pulses (see Fig. 6 (b)) while ensuring all fields shared the same polarization.
Subsequently, the combined pulses underwent amplification to variable power levels, ranging
in the order of hundreds of milliwatts, utilizing an EDFA. The amplified pulses were then
coupled into a one-kilometer single-mode fiber. Simultaneously, light from the same fiber laser
in the other path served as the local oscillator (LO) and was combined with the signal and
idler pulses at the far end of the one-kilometer fiber. The wavenumber mismatch term ∆k can
be approximated as ∆k ≈ 2β2∆ωΩ, where ∆ω denote the frequency difference between the
pumps laser carrier and the signal and idler laser carrier. The corresponding nonlinear coherence
length45 is Lch = π/∆k ≈ 1.6 km which exceeds the length of the fiber used in the experiment.
The differential group delay of the fiber was on the order of 0.1 ps · km−1/2, resulting in the nearly
parallel polarization of the signal, idler, and pumps along the 1 km fiber. The broadening of the
pulses owing to fiber dispersion is negligible in this experiment, since for the τ = 1 ns pulses of
the signal and idler, the dispersion length is τ2/|β2 | = 50, 000km thus greatly exceeding the 1 km
length of fiber that was used.

At the output port, the pump pulses were filtered using a fiber-coupled bandpass filter with a
bandwidth of 0.8 nm. After that, the signal, idler, and LO were split into two optical fiber-coupled
band-pass filters (BPF) with a bandwidth of less the 10 GHz, that allowed only the LO and
the signal/idler to pass through. The LO is a continuous-wave signal, hence the beating signal
appears on the oscilloscope only when the signal arrives. The filtered signals were then detected
using photoreceivers with a rise time of 35 ps and responsivity of 4.4 VW−1, and sampled by
a digitizing oscilloscope at a sampling rate of 16 Giga-samples per second. Consequently, the
detected voltage exhibited a central frequency of 5 GHz, in addition to the frequency offset caused
by the all-optical Stern-Gerlach effect in the time domain. The Fourier transform of the detecting
signal was calculated offline in order to calculate the PSD of the signal and idler. Due to the
difficulty in accurately detecting the pump power in the experiment, we employed simulations to
determine the power values.

5.2. Numerical calculations

The simulation in this study employs the split-step Fourier method as the underlying computational
approach [46,53,54]. Initially, the idler and signal fields are non-chirped Gaussian pulses, while
the pumps are modeled as 2 ns duration ramp pulses. The simulation in the experimental result
section considers the potential formation of higher order tones of the signal and idler during
propagation. Furthermore, it incorporates the consideration of small phase mismatch that occurs
in the fiber due to chromatic dispersion. The simulation utilizes the following parameter values:
a GVD parameter of β2 = −20 ps2 km−1, a Kerr nonlinear coefficient of γ = 1.3 W−1 km−1, and
a loss coefficient of α = 0.2 dB km−1.
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