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Abstract
In 1952David Bohmproposed an interpretation of quantummechanics, inwhich the evolution of
states results from trajectories governed by classical equations ofmotion butwith an additional
potential determined by thewave function. There exist only a few experiments that test this concept
and they employedweakmeasurement of non-classical light. In contrast, we reconstruct the Bohm
trajectories in a classical hydrodynamic systemof surface gravity waterwaves, by a directmeasurement
of thewave packet. Our system is governed by awave equation that is analogous to the Schrödinger
equationwhich enables us to transfer the Bohm formalism to classical waves. In contrast to a quantum
system,we canmeasure simultaneously their amplitude and phase. In our experiments, we employ
three characteristic types of surface gravity waterwave packets: two and threeGaussian temporal slits
and temporal Airywave packets. The Bohm trajectories and their energyflows follow the valleys and
bounce off the hills in the corresponding quantumpotential landscapes.

1. Introduction

Almost a hundred years ago, that is in 1924, Louis de Broglie proposed an explanation of quantumphenomena
based on nonclassical trajectories guided by awavefield [1]. This revolutionary ideawas followed by Erwin
Madelung’s re-formulation [2] of Schrödinger’s equation in terms of hydrodynamic variables which provides
the foundations of the interpretation of quantummechanics put forward byDavid Bohmknown as Bohmian
mechanics [3, 4]. This theorymakes a proposal for how themicroscopic worldmight work that agrees with all
tests of quantummechanics [5]. In contrast to theCopenhagen interpretation [6]which assumes that thewave
function determines only the probability ofmeasuring a particle at a certain position, according to Bohmian
mechanics, particles havewell-defined positions at all times [7], and follow trajectories, known as Bohm’s
trajectories [8]. Furthermore, in Bohmianmechanics thewave function is used to construct a quantumpotential
that, when combinedwithNewton’s equations, draws the Bohm trajectories [3].

Comprehensive discussions of Bohmianmechanics, which has recently received renewed attention can be
found at several places in the literature [9–13] andmany interesting applications beyond the interpretation of
quantummechanics have been proposed. For example, Bohmianmechanics is utilized for a better
understanding of the quantum–classical transition [14] aswell as, nanoscale electron devices and electron
transport in open systems [15]. Bohmian equations sometimes providemore efficient computational tools than
those obtained by orthodoxmethods [16] and are now routinely used in quantum chemistry [17, 18]. In
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addition, it was recently argued that this formalism can also be employed to gain insight into concepts in
cosmology [19].

However, despite being covered by awide spectrumof different physical systems, an experimental
observation of Bohm trajectories is challenging [20] andwe are only aware of a few experiments usingweak
measurements [21, 22] of either single photons [23] or entangled photons [24]. In the present article we study
experimentally Bohmianmechanics for a classical systemof surface gravity waterwaves. This unusual
application of a concept fromquantummechanics to a classical wave, and its verification by an experiment, is
made possible by three physical properties of surface gravity water waves: (i) they obey awave equation that is
analogous to the Schrödinger equation of a quantumparticle. (ii)Wecan define the ingredients of Bohmian
mechanics such as trajectories or the quantumpotential as demonstrated by table 1, and (iii) it is possible to
measure the amplitude and determine the phase of a surface gravity water wave [25, 26].

We further emphasize that the ability to reconstruct trajectories of a wave packet is not limited to quantum
mechanical waves, but is useful also for classical waves. In fact, intriguing concepts, such as the trajectories in
double-slit ormultiple-slit wave interference experiments are present for both quantumwaves as well as classical
surface gravity waterwaves.Moreover, themeasurement we performdoes not disturb the propagation
dynamics, nor does it cause a collapse of thewave function.

Our article is organized as follows: in section 2we lay the foundations for the discussion of our experiments
on the observation of Bohmian trajectories and quantumpotentials corresponding to classical waves. In
particular, we compare and contrast typical elements of Bohmianmechanics as defined in quantum theory to
the analogous expressions of surface gravity water waves.We then devote section 3 to our experiments and
report the time evolution and the quantumpotentials for four configurations: (i)The familiar double-slit
arrangementwith an initial zero transversemomentum, (ii) the three-slit experiment againwith zero
momentum, (iii) the double-slit versionwith non-zeromomentum, and (iv) a truncated Airy wave packet.We
conclude in section 4 by briefly summarizing our results and presenting an outlook.

In order to keep our article concise while self-consistent we have included an appendix.Herewefirst briefly
review theHilbert transformwhich allows us to extract the phase of thewave function, and thenwe provide
explicit expressions for thewave packets used in our experiments.

2. Surface gravitywater waves

In a framemovingwith the group velocity cg the evolution of the complex-valued envelopeA= A(τ, ξ) of a
surface gravity waterwave follows from thewave equation
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x t

¶
¶

=
¶
¶

i
A A

, 1
2

2

reminiscent of the Schrödinger equation of a free particle as summarised in table 1. The scaled dimensionless
variables ξ and τ are related to the propagation coordinate x and the time t by ξ≡ ε2k0x and ( )t ewº -x c tg0 .
The carrier wave number k0 and the angular carrier frequencyω0 satisfy the deep-water dispersion relation
w = k g0

2
0 with g being the gravitational acceleration, and define the group velocity cg≡ ω0/2k0. The parameter

Table 1.Bohmianmechanics of classical surface gravity water wavesmotivated by its quantum
counterpart. Here t and x denote time and space, whereas τ and ξ are dimensionless transverse and
propagation coordinates. In this transition [27] from a quantumwave to a classical surface gravity wave
wemake the replacements ÿ → 1, i → − i andm → 1/2.
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ε≡ k0a0 characterizing thewave steepness is assumed to be small, that is ε= 1, in order to ensure [28] the
linearity of thewave equation.

From equation (1) and table 1we note that for spatially evolving surface gravity waterwaves, the roles of time
and space are interchanged compared to quantummechanics [29–31]. Hence, the guiding equation

⎧
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in terms of the complex-valued amplitudeA and its time derivative determines the surface gravity waterwave
trajectories ( )t t x= .

Another way to obtain trajectories in awave theory ismotivated by classicalmechanics and involves [7] the
quantumpotential. For surface gravity water waves this potential reads
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where |A| is the absolute value of the complexwater wave envelope governed by thewave equation equation (1).
We note that the elevation of the surface gravity waterwave is real, and connected to the complex envelopeA

by being its real part. Hence, the imaginary part ofA follows from theHilbert [32] transformof the real-valued
elevation, as outlined in the appendix.

3. Experimental realization

The experiments discussed in our article were performed in a 18 m long, 1.2 mwide, and h= 0.6 mdeep
laboratorywave tank shown infigure 1.Water waves are generated by a computer-controlledwavemaker placed
at one end of the tank. Fourwave gauges supported on a bar connected to a computer-controlled carriage
measure the elevations of the surface gravity water waves at any location along the tank [25, 26]. For our
experiments they are placed at 30 different locations in the region of interest of 0.4− 12m to eliminate residual
reflections from the absorbing beach placed at the other end of thewater tank, resulting in 120 spatial
coordinates.

We have used a carrier wave frequency andwave number ofω0= 9 rad/s and k0= 8.3 1/m giving rise to a
group velocity cg= 0.54m/s, and the amplitudes are a0= 6mm for the two-slit and three-slit experiments, and
a0= 5mm for the self-accelerating Airywave packet shown infigures 2 and 3. For all cases, k0 satisfies the deep-
water condition [31] k0h> π, and the corresponding steepness is ε< 0.05 guaranteeing the validity of the linear
Schrödinger equation.

Figure 1.Concept of our experiment to observe Bohm trajectories and the quantumpotential of surface gravity water waves (top) and
photographs of the key ingredients of the set-up (bottom). At one end of the water tank (a) four computer-controlled wavemakers (b)
create surface gravity water waves whose elevations aremeasured bywave gauges (c) based on time-dependent resistance. Thewave
gaugesmeasure the height of thewater surface, practically without disturbing the propagation dynamics. From the collection of
envelopes in time and spacewe reconstruct the Bohm trajectories as well as the quantumpotential.

3
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Infigures 2 and 3we show the absolute value |A| of thewave-function analogue in a two- and three-
dimensional representation togetherwith the Bohm trajectories using equation (2), as well as the quantum
potentials defined by equation (3) for four different wave packets: the two-slit and three-slit experiments with
zeromomentum infigures 2(a), (b), a two-slit experiment with a non-zeromomentum, and a truncated Airy
wave packet displayed by figures 3(a), (b).

The temporal-slit experiments were performedwith a temporal width of t0= 1.7s and temporal distances
ts= 8 s and ts= 4 s for two and three slits, respectively.We note that for the three-slit experiment we chose an
initial wave packet with a partial overlap between thewings of the three Gaussian lobes, in order to highlight the
appearance of additional features compared to the two-slit experiment. For the explicit formof thewave packets
we refer to the appendix.

Infigure 2(a)we show the case of two-slit interference, a cornerstone of quantummechanics. Here the Bohm
trajectories aremarked by black dashed lines. The average trajectory (white line) follows a straight line in
accordancewith the Ehrenfest theorem [33, 34], i.e. the average trajectory is identical to the classical propagation
of the particle which is in this case stationary owing to the fact that the particle exits a slit with zeromomentum.

The interference pattern at the end of thewater tank, that is at x= 12m, is intimately linked to the quantum
potential. Figure 2(c) shows that the trajectories avoid the regions of destructive interference where the quantum
potential exhibits very high values. In contrast, the trajectories concentrate in the domains of constructive
interference, where the quantumpotential assumes small values.

For the three-slit experiment displayed infigures 2(b), (d), we observe a spot at x= 6mwhere destructive
interference accrues, and the corresponding trajectories avoid this region during propagation. From the view of
the quantumpotential which is presented infigure 2 (d) this avoidance results from a sharp hill in this region.

Next we examine two slits with an effective initial non-zeromomentum [27] p0=− 2 rad/s. Fromfigure 3
(a)we note that the particles exiting the two slits have Bohm trajectories propagating at a negative constant
velocity. The quantumpotential shown infigure 3(c), has its repulsive walls shifted in themomentumdirection,
providing canals of linearly shifted trajectories with the corresponding initialmomentum.

Figure 2.Experimentally obtained surface gravity water wave evolutions (top) and corresponding quantumpotentials (bottom) of
two-slit (a), (c) and three-slit (b), (d) envelopes |A|. Bright and dark colors reflect high and low values, and the color bar units are
millimeters. The Bohm trajectories indicated by dashed lines in the 2D-intensity plot underneath (a), (b) and following from
equation (2), run in the valleys of the landscape formed by the quantumpotentials (c), (d). The tallmountain ranges lead to low
amplitudes |A|. A key difference between the two-slit and three-slit results is the dark island apparent in the 2D-plot of (b)which the
Bohm trajectories seem to avoid, and the corresponding crater in the envelope, both ofwhich result from an additionalmountain at
the center of the quantumpotential (d).
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Finally, we study theAiry wave packet which is a solution of the time-dependent Schrödinger equation for a
quantummechanical particle in a linear potential. It was predicted [35] in 1979 and experimentally verified
[25, 31, 36–40] for optical, matter andwater waves that thewavefronts of freely propagating Airy wave packets
self-accelerate and follow a parabolic trajectory.However, in the case of zero initialmomentum the center of
mass of anAiry wavemoves at the group velocity which is zero. For a pureAiry wave packet which is infinitely
long and non-normalizable there is no contradictionwith Ehrenfest’s theorem, as the state has an undefined 〈t〉
for all coordinates.

However, in our experiment we generate truncatedAirywave packets with t0= 0.65 s and the truncation
parameterα0= 0.1, which are indeed normalizable with 〈t〉= 0.We chose a relatively small value of t0 in order
to bring outmost clearly the essential features of the propagation dynamics [38]. For the analytic formof the Airy
wave packet we refer to the appendix.

Figure 3(b) shows that thewavefront self-accelerates even for surface gravity waterwave packets. The
quantumpotential depicted infigure 3(d) brings out the deeper reason: it exhibits a strong repulsive hill at the
right corner, causingmost trajectories to lean towards the opposite direction. Interestingly, the Bohm
trajectories also reveal that the self-acceleration of thewavefront is a consequence of accelerating particles.
However, there are also particles which decelerate, andmovewith almost constant negative velocity. As a result,
the center ofmass of the entirewave packet ismaintained at 〈t〉= 0 thus, preserving the Ehrenfest condition.

4. Conclusions

In our article we have applied the Bohm interpretation of quantumwaves relevant to themicroscopic world to
macroscopic surface gravity water waves and have gained deeper insight into their propagation dynamics.We
have not only observed Bohm trajectories of two-and three-Gaussian slits andAiry wave packets but have also
measured successfully the corresponding quantumpotentials. Our experiments reveal that the shape of the

Figure 3.Experimentally obtained surface gravity water wave evolutions (top) and quantumpotentials (bottom) of two-slit envelopes
with non-zero initialmomentum (a), (c) and a truncated Airywave packet (b), (d). Bright and dark colors reflect high and low values of
|A|, and the color bar units aremillimeters. The Bohm trajectories indicated by dashed lines in the 2D-intensity plot underneath (a) are
tilted in comparison to the ones shown in left columnoffigure 2, and result from the tilted valleys of the quantumpotential (c). The
quantumpotential of the truncated Airywave packet (d) consists of narrow and rather deep valleys that curve to the right indicating
the familiar self-acceleration and guide the Bohm trajectories. However, there also exist trajectories bending to the left and the average
trajectory is straight, in complete agreement with the free propagation of the center ofmass of the truncatedAiry wave packet.
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quantumpotential indeed dictates the propagation of thewaves and provides a detailed visualization of their
dynamics.

We emphasize that our experimental setup is neither limited to slits, nor to a free propagation. Indeed, it
allows us to study the time evolution of an arbitrary wave packet, and even Bohmianmechanics in the presence
of an external potential [25]. Themethodswe have demonstrated can be generalized to several other
macroscopic types of waves including electromagnetic aswell as acoustic waves.
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Appendix.Wave function essentials

In this appendixwe briefly elaborate on the data analysis and the formof thewave packets. First, we discuss the
Hilbert transform and its relation to the imaginary part, as well as the phase and amplitude of thewave function.
Second, we define the temporal envelopes of the initial wave packets used in our experiments.

A.1. Phase and amplitudemeasurement fromHilbert transform
In order tomeasure the imaginary part, phase and amplitude of thewavewe use theHilbert transform [32]. The
amplitude and phase induced during the pulse propagation can be determined by creating a complex signal

( ) ( ) ( ) ( ) · { ( )} ( )º + º +z t u t iv t u t i u tHilbert 4

from a real signal u= u(t)with the help of theHilbert transform
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Next, using the polar decomposition
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and the instantaneous phase
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u t
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Weobtain z= z(t) from the toolbox function ‘hilbert’ [41] ofMatlab. This function computes theHilbert
transform for a real input sequence u, and returns a complex result of the same length, z= hilbert(u), where the
real part of z is the original real data and the imaginary part is the actualHilbert transformdefined by
equation (5). In order to bring outmost clearly the difference between the toolbox function ‘hilbert’ ofMatlab
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and theHilbert transformof equation (5)we use small and capital letters.We note that z is called the analytic
signal, in reference to the continuous-time analytic signal.

A.2. Formof the initial wave packets
The temporal variation of the initial surface elevations η(2) and η(3) corresponding to the two-slit and three-slit
experiments is based onGaussian envelope slits of the form

( ) { [ ] [ ( ) ]} ( )( )h º - + - -t a t t t t t, 0 exp exp , 9s
2

0
2

0
2 2

0
2

and
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3

0
2

0
2 2

0
2 2

0
2

respectively, where t0 is the temporal width of the slits and ts denotes the slit separation.
We also study the truncated Airy wave packets [35, 38] generated by the truncated Airy envelope

⎜ ⎟ ⎜ ⎟
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⎞
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( ) ( )( )h aº - -t a
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0
0

0
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whereα0 is the truncation parameter.
Finally, we analyze two slits with initial non-zeromomenta [27], corresponding towave packets generated by

the two-slit function

( ) ( )( ) ( )h hº  ip texp , 12p
2 2

00

with a negative or positive initialmomentum p0 and η
(2) is given by equation (9).
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