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Abstract Quadratic nonlinear photonic crystals are materials

in which the second order susceptibility is spatially mod-

ulated while the linear susceptibility remains constant. These

structures are significantly different than the more common pho-

tonic crystals, in which the linear susceptibility is modulated.

Nonlinear processes in nonlinear photonic crystals are governed

by the phase matching requirements, which are determined by

the reciprocal lattice of these crystals. Therefore, the modulation

of the nonlinear susceptibility enables to engineer the spatial

and spectral response in various three-wave mixing processes.

It enables to support the efficient generation of new optical fre-

quencies at multiple directions. We analyze three wave mixing

processes in nonlinear photonic crystals in which the modula-

tion is either periodic, quasi-periodic, radially symmetric or even

random. We discuss both one-dimensional and two-dimensional

modulations. In addition to harmonic generations, we outline

several new possibilities for all-optical control of the spatial and

polarization properties of optical beams in specially designed

nonlinear photonic crystals.

Some examples of nonlinear photonic crystals. Top line: 2D

Periodic crystals; center line: 1D quasi-periodic crystals, sym-

metric and anti-symmetric all-optical deflectors; bottom line:

radially symmetric structures.
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1. Introduction

When an electromagentic field of angular frequency trav-
els through a dielectric medium, it induces electrical dipoles
in the material’s atoms. These dipoles usually oscillate in
the same angular frequency as that of the forcing electro-
magenetic field. The macroscopic induced dipole moment
per unit volume is the material polarization , and it is
related to the electric field by the linear electrical suscep-
tibility . The real and imaginary part of the linear
susceptibility determine the material’s dispersion and ab-
sorption. The absorption occurs since the electromagnetic

wave transfers energy to the atoms by inducing oscillating
dipoles. However, the energy can also flow from the atoms
to the electromagnetic field, since the oscillating dipoles
are small antennas that radiate electromagentic waves. The
electric field may also induce dipoles in the material that
oscillate in integer multiples of . Far from resonance,
the induced polarization can be written as a Taylor expan-
sion: , where

is the vacuum permittivity and are the sec-
ond and third order electrical susceptibility. The electric
field and polarization are three-dimensional vectors, hence

are and ten-
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Figure 1 (online color at: www.lpr-journal.org) Electric field at �, induced polarization at ��, electric field at �� and combined
polarization and second harmonic field: (a) Homogeneous crystal. Owing to dispersion, the induced polarization becomes out of phase

with the electric field that was generated at the beginning of the crystal. (b) Periodic reversal of the material nonlinear coefficient brings

the polarization back in phase with the second harmonic wave.

sors. Here we consider for simplicity one component of the
induced polarization, and assume that we can select a sin-
gle component from each one of the three tensors to relate
between the electric fields and the polarization component.

The first nonlinear term, ���
�����, scales as the square

of the electromagnetic field. This so-called quadratic non-
linearity is responsible for various three-wave mixing pro-
cesses, in which waves at frequencies ��, �� generate
waves at new frequencies �� � ���, ���, �� � �� and
0. It should be noted that for many materials the second
order susceptibility ���� is zero, and therefore the strongest
nonlinearity is cubic, governed by ����. The quadratic non-
linearity is non-zero only in a small group of materials that
lack inversion symmetry center, and are called non-centro-
symmetric materials.

Let us consider as an example the special and impor-
tant process of second harmonic generation, in which a
wave of angular frequency � generates a new waves of
angular frequency ��. The nonlinear effect is usually a
weak effect, and in order to obtain sufficient conversion
efficiency, the nonlinear device should therefore be much
longer than the wavelength. The typical length is in the
cm range, 4 orders of magnitude longer than the typical
optical wavelength. Ideally, second harmonic waves that
were generated in different parts of the nonlinear crystal
will interfere constructively. However, the induced polar-
ization depends on the wave-vector ���� (and hence of the
refractive index ����) of the generating waves, whereas the
propagation of the nonlinearly generated wave depends on
����� (hence on �����), as shown in Fig. 1. Unfortunately,
owing to material dispersion, the refractive indices are dif-
ferent, and as a result light waves from different parts of
the crystal will be out of phase and will therefore interfere
destructively, resulting in a very small conversion efficiency.
This so-called phase-matching problem is a key problem in
quadratic nonlinear processes.

Various methods have been developed to overcome the
phase matching problem. The most widely used method
relies on the birefringence of the crystal. The key idea is to
overcome dispersion by appropriate selection of the polar-

Figure 2 (online color at: www.lpr-journal.org) Typical disper-

sion curves for the ordinary and extraordinary refractive indices

of a uniaxial crystal. Birefringent phase matching is achieved if

����� � ������ Inset shows the index ellipse of the ordinary
wave at � (which is a circle) and the extraordinary wave at ��.

izations of the interacting waves. As an example, in Fig. 2
we show the dispersion curves of the ordinary and extraor-
dinary polarizations in a uniaxial material. As can be seen,
for a certain angular frequency � we get ����� � ������.
The nonlinear polarization term that generates the second

harmonic is proportional to the product of �
���
��� and the

square of the x-component of the electric field at angular
frequency �. However, birefringent phase matching suffers
from several drawbacks: (a) It is not always possible to com-
pensate the material’s dispersion. For example, second har-
monic generation cannot be birefringently phase-matched
in LiNbO3 for generating wavelengths in the blue and ultra-
violet ranges. (b) One is limited to the use of non-diagonal
terms of the ���� tensor, but the stronger components are

the diagonal components. For example, in LiNbO3, �
���
��� is

approximately seven times larger than �
���
���. However, to

use this diagonal term, all the three interacting waves must
be extra-ordinary polarized, and in this case one cannot rely
on the crystal’s birefringence to compensate the dispersion.

© 2010 by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim www.lpr-journal.org
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Figure 3 (online color at: www.lpr-journal.org)

Electric field poling technique: 1) Photolithography

of a photoresist-coated ferroelectric crystal. 2) Etch-

ing of exposed areas in the photoresist. The top and

bottom surfaces of the crystal are then coated with

electrodes. 3) A high voltage pulse reverses the sign

of the electrical dipoles in areas in which the top

metal is in contact with the crystal.

A second method to solve the phase matching problem
is to spatially modulate the nonlinear coefficient as illus-
trated in Fig. 1b. This method is called quasi-phase match-
ing [1, 2] (QPM) and in its simplest form is just a periodic
binary modulation at a fixed spatial frequency. It allows
to phase match any nonlinear process in the transparency
range of the mixing crystal by choosing an appropriate
modulation frequency. Moreover, the process can be done
with any chosen nonlinear coefficient and in particular with
the diagonal terms of the ���� tensor. Perhaps the most in-
teresting possibility enabled by quasi phase matching is the
ability to shape the spectral and temporal response of the
nonlinear mixer. This method has its own disadvantages:

(a) The modulation of the nonlinear coefficient reduces the
efficiency. As an example, a binary periodic modulation
reduces the conversion efficiency by a factor of at least
������ � ���

(b) A suitable method is needed for modulating the nonlin-
ear coefficient, and with adequate spatial resolution.

Fortunately, there was a significant progress in development
of methods to modulate the nonlinear coefficient in the last
decade. In particular, the electric field poling method [3]
has been used successfully to pole various ferroelectric
crystal such as LiNbO3, LiTaO3, KTiOPOtsb4, etc. The
method relies on applying a high voltage pulse through
a patterned electrode, as shown in Fig. 3. If the applied
field surpasses the coercive field of the ferroelectric crystal,
the direction of the electrical dipole is reversed in areas
defined by the electrodes. In these materials, the required
poling resolutions are typically in the 5–10 μm range for
interactions in the visible and near infrared, and 20–40 μm
for interactions in the mid-infrared.

Periodically-poled ferroelectric crystals with these peri-
ods are now commercially available from several vendors.
Sub-micron resolutions [4,5] have been reached in research
laboratories for special non-collinear and backward nonlin-
ear interactions.

Another promising method for modulating the nonlin-
ear coefficient is orientation patterning of semiconductors
such as GaAs [6]. GaAs is particularly attractive in the
mid-infrared range, owing to its high transparency in the
range 1–16 μm (whereas most ferroelectric materials have
excellent transmission in the visible and near infrared, but
are almost opaque for wavelengths above 5 μm). GaAs also
has a very high nonlinear coefficient ��� � ��� ��

�
(3–5

times higher than the highest nonlinear coefficient of ferro-
electrics), excellent mechanical properties and high thermal
conductivity. GaAs is optically isotropic, therefore it can-
not be birefringently phase matched. However, QPM is
possible in samples in which the crystallographic orienta-
tion (and hence the sign of ���) is periodically rotated. The
period is set by defining a thin periodic Ge buffer layer
on GaAs substrate, followed by epitaxial growth of layers
with different orientations of the GaAs substrate and on
the Ge layer, see Fig. 4. Hydride vapor phase epitaxy en-
ables to reach samples with thickness of 500 μm, which is
sufficiently thick for many nonlinear optical applications.

Figure 4 (online color at: www.lpr-journal.org) Fabrication

process for orientation patterned GaAs: A Ge buffer layer is grown

on a GaAs substrate, followed by selective chemical etching and

epitaxial growth. The orientation of the GaAs that grows on the

Ge buffer layer is rotated with respect to that of the buffer layer.
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Figure 5 (online color at: www.lpr-

journal.org) Examples of nonlinear

photonic crystals. (a,d) are optical mi-

croscope images of the top views of

two-dimensional quasi-periodic struc-

tures embedded with the underlying

quasi-periodic lattices (the SHG Fan

and the Frequency Fan, see Sect. 4

for details). (h) is the image of annu-

lar periodic nonlinear photonic crys-

tals. (b,e), and (i) are the correspond-

ing far field diffraction patterns of the

three NLPCs. (c,f), and (g) are atomic

force microscope (AFM) images of

two-dimensiona periodic NLPC hav-

ing hexagonal lattice and circular mo-

tif. (j) is an AFM image of the annular

NLPC and (k) is an AFM image of a

1D quasi-periodic NLPC.

Other methods include poling of ferroelectrics by ion-
exchange or electron beam irradiation [2, 7], optical and
electrical poling of polymers [8] and electrical poling of
glasses [9, 10]. For the ferroelectric or semiconductors ma-
terials the nonlinear coefficient is alternating between a
positive and negative value, whereas for glasses and poly-
mers the nonlinear coefficient alters between a non-zero
value in the poled regions and null nonlinearity in the re-
maining parts.

The modulation of the nonlinear coefficient can be more
sophisticated than a simple one-dimensional periodic mod-
ulation, which is usually suitable for phase matching only
a single nonlinear interactions. Additional degrees of free-
dom may be provided by using quasi-periodic [11–13] or
even random [14, 15] modulation of the nonlinear coef-
ficient. Another extension is provided by modulating the
nonlinear coefficient in either two [16–18] or even three
dimensions [19]. These possibilities enable to phase match
multiple interactions, in different propagation directions of
the input and output waves. Some examples of nonlinear
structures are shown in Fig. 5.

Materials in which the second order susceptibility ����

is spatially modulated, either periodically or a-periodically,
while the linear susceptibility remains constant are called
nonlinear photonic crystals (NLPCs). Since the linear sus-
ceptibility and correspondingly the refractive index are
not altered, the NLPCs are significantly different than the
more common photonic crystals, in which the linear sus-
ceptibility is modulated. It should be emphasized that other
types of nonlinear interactions are possible in photonic crys-
tals, including third-order (����) nonlinearities in “standard”
photonic crystals [20, 21]. Furthermore, one dimensional
photonic crystals in which both the linear and the second-
order nonlinear susceptibilities are modulated have been
analyzed [2,22,23]. Two dimensional and three dimensional

photonic crystals with modulated second order nonlinearity
were reviewed in [24]. However, since the common tech-
niques for modulating the second order nonlinearity (e.g.
electric field poling in ferroelectric crystals, orientation pat-
terning of semiconductors) do not alter the linear refractive
index of the material, we will concentrate in this paper
only on materials having homogeneous linear index and
space-dependent second order nonlinear index.
In the following sections we shall analyze nonlinear

interactions in NLPCs. The coupled wave equations in a
material with either homogeneous or periodically modu-
lated nonlinear coefficient will be presented in Sect. 2. In
Sects. 3, 4, and 5 we shall consider interactions in more
sophisticated NLPCs such as periodic two-dimensional
NLPCs, quasi-periodic NLPCs and random NLPCs , re-
spectively. Sect. 6 introduces some new types of NLPCs,
e.g. NLPCs that are not lattice -based and posses radial
symmetry, or special NLPCs that enable nonlinear beam de-
flection and beam transformation. Finally, Sect. 7 presents a
summary and outlook for future developments in this field.

2. Wave equations in NLPC

Consider now the case of second harmonic generation in
a NLPC. The results shown here can be easily generalized
to other three wave mixing processes, e.g. sum frequency
generation and difference frequency generation. Assuming
that a plane wave of frequency � propagates in the trans-
verse plane of the NLPC, this wave generates a second
harmonic wave owing to the second order susceptibility of
the material. Assuming that the fundamental frequency is
linearly polarized along one of the NLPC axes, and consid-
ering a specific linear polarization of the generated second
harmonic wave, the coupling between the two beams is

© 2010 by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim www.lpr-journal.org
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Figure 6 (online color at: www.lpr-journal.org) Phase matched, non-phase matched and (1D periodic) quasi-phase matched cases.

From left to right: (a) Nonlinearity along the crystal and k-vector scheme, (b) Absolute value of the second harmonic field vs. the spatial

frequency (c) Evolution of the second harmonic intensity along the crystal (d) Phasor diagram of the second harmonic wave .

given by the appropriate element of the nonlinear suscep-

tibility tensor ��� � �
���
�� ��, where � and � are contracted

Cartesian indices [25].
The relevant components of the fundamental and sec-

ond harmonic wave can be written as

������ �� �
�
������ ���	��	�� �� � ��
 � �
�
 � (1)

������� �� �
�
������� ���	���	�� ��� � ��
 � �
�
 � (2)

Let us assume that the relative change of the field envelopes
��� ��� over a propagation distance of a wavelength is
small. Under this so called slowly varying envelope approx-
imation [25], the amplitudes of the fundamental and second
harmonic waves are coupled by the nonlinear polarization
(in M.K.S):

�� � ������ � ��
	�

��
����

�

�������

� ���	������ � ���� � �
 � (3)

��� � ������� � ���
	�

��
��
�������

� ���	����� � ���� � �
 � (4)

where ��� is the complex conjugate of �� . Assuming that
the nonlinear conversion efficiency is low, the pump ampli-
tude can be assumed constant throughout the entire interac-
tion length (non-depletion approximation). In this case, we
consider only the evolution of the second harmonic field.
Let us examine this equation in a particular case in which

both the fundamental and second harmonic waves propa-
gate along the Z direction. We shall also assume that the
modulation of the nonlinear coefficient is only along the
Z direction. In this case, the wave equation for the second
harmonic wave has a simpler, scalar form:

�������

��
� ��

	

���
��
������� ���	����� � �����
 
 (5)

For a crystal of length L, the second harmonic field is
therefore given by:

������ � ��
	

���
��
�

�
�

��

������ ����������� � (6)

where �� � ��� � ��� is the phase mismatch. Note that
the integral is pefromed from �� to� by extending the
definition the nonlinear function ������ for every z, equat-
ing it to zero outside the crystal. This equation shows that
the electric field at the end of the crystal is proportional to
the Fourier transform of the space-dependent nonlinearity.
It is convenient to define the nonlinearity as the product of
a fixed value of the nonlinear tensor ��� and a uniltess space
dependent function ����. The electric field at the end of the
crystal is therefore proportional to its Fourier transform

����� �


�

�
�

��

���� ����������� 
 (7)

In the next sections and in Fig. 6 we examine three im-
portant cases – perfect phase matching, no phase matching
and periodic 1D quasi phase matching.

www.lpr-journal.org © 2010 by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim
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(a) Perfect phase matched case in an homogeneous crystal,
where �� � �. Here we have a monotonous linear
(quadratic) buildup of the second harmonic amplitude
(intensity). In this case we get ���� � �� ������ �

��
�����

����
��
� and

��� �
�	�
���

�������
��

����
� � (8)

where we have used the relation � � �����
���.

(b) Non-phase matched case in an homogeneous crystal,
where �� �� �. In this case, using Eqs. (6) and (7)
one obtains

������ � �
	
��
����

��
�

���	� � �

��
� (9)

��� �
�	�
���

�������
��

����
� ��	

��������

��������

�

	�
���

��������
����

��� ��	�������� � (10)

If �� is less than ��� then there is still a reasonable
efficiency, however for larger phase mismatch values,
we get a rapidly oscillating term in Eq. (6), which re-
sults in negligible conversion efficiency. The second har-
monic amplitude oscillates with a characteristic length
�� � ����.

(c) Quasi phase matched case in a periodically modulated
crystal. Here the phase mismatch is balanced by the
modulation of the nonlinear coefficient. Let us con-
sider a periodic modulation with a period �, where the
lengths of the positive and negative nonlinear coeffi-
cient in each period is equal. In this case the nonlinear
function can be described by


��� �

�
���	

�
��

�
�
�
�

��
� ���� � � � ���

�� ��������
�

(11)

In the case of an infinitely long crystal, the nonlinear
coefficient can be written as a Fourier series


��� �

���
���

� ���������� (12)

where is � � �



��	�
� � and � � �

�
. Note that

the Fourier coefficient � is non-zero only for the odd
values of�. Quasi phase matching occurs when� � ��,
or more explicitly:

���

�
� ��� � ���� (13)

If we insert the Fourier decomposition expression of
Eq. (12) in Eq. (6), it is easy to see that for all the non-
phase matched components of the Fourier series, one gets

an oscillating term whose integral is nearly zero. Only the
phase matched term will lead to a significant build-up of
the second harmonic power:

������ � ��
	
����

����
��
� � (14)

The second harmonic intensity in this case is

��� �
�	�
��� ���

�

�������
��

����
�� (15)

By comparing Eq. (15) to Eq. (8), we see that the quasi
phase matched field (intensity) is smaller by a factor of
� ����

�� with respect to the perfectly phase-matched
case. The largest Fourier coefficient is �� � �



� ����.

However, in quasi-phase matching one can use the (rela-
tively large) diagonal elements of the ���� tensor, which
cannot be used in birefringent phase matching, hence the
total efficiency can be larger for QPM. For example, in
LiNbO3 we have �����
�� � ��

��, therefore, the inten-
sity conversion efficiency can be ��
� � ���� times higher
for QPM interactions.
A more general case of periodic one dimensional mod-

ulation occurs when the size of the positive and negative is
not equal. We define the ratio of the (say) positive part to
the period � as the duty cycle �. So far, we have consid-
ered only the case of � � ���, but this parameter can get
any value between 0 and 1. The nonlinear coefficient in the
general case can be represented by


����� � 
�� ���	
�
���

� �
�
��

	
� ���

� �
�

	


� 
��

��
���

��
�	�� � (16)

where ��� is the saw-tooth function

������ � � ��� ������� � �

In this case the Fourier coefficient is

� � � ��	�������� �

Note that the even orders of the Fourier decomposition
may also be used now, provided � �� ���. As an example,
the highest values of the second Fourier coefficient, �� �
�


� ����
, is obtained for � � ����� ����. The intensity

conversion coefficient of second order QPM is 1/4 of a first
order QPM (with optimal � of 0.5) and � 1/10 of perfect
phase matching.
Although the higher QPM orders suffer from lower

efficiency, owing to the smaller Fourier coefficients, they
are sometimes used since for a given nonlinear process,
the required period is proportional to the order. In cases
in which the material exhibits high spectral dispersion, the
required period in first order QPM may be smaller than the
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Figure 7 (online color at: www.lpr-journal.org) Absolute value

of the Fourier coefficient ���� as a function of the QPM order�

for different duty cycles� (a) D=0.5, (b) D=0.33 (c) D=0.25

resolution of the nonlinear modulation. In these cases, a
higher QPM order is very useful. One precaution is that
higher QPM orders require tighter control of the fabricated
duty cycle. In Fig. 7 we show the absolute value of the
Fourier coefficient ���� as a function of the QPM order�
for duty cycles of 0.5, 0.33 and 0.25. As can be seen, the
efficiency of the second order QPM is nullified for� � ���,
while the third order QPM efficiency is nullified for� � �

�

(and also for � � �
� ).

So far, we have considered only quasi phase matching in
infinitely long crystals. For a real crystal with finite length
�, we need to multiply the infinitely long nonlinear function
of Eq. (16) with the rectangle function ��������	 (which is
unity when the absolute value of the argument is less than
1/2 and 0 otherwise). In the Fourier space, this will lead to a
convolution of the Fourier transform of Eq. (16) (which is a

series of delta functions at ���� ) with the Fourier transform

of the rectangle function, i.e.
����������

���� . As in the case of

the homogeneous crystal, the finite crystal length provides
some tolerance in the phase mismatch, i.e. for a given QPM
order �, the process is still relatively efficient provided
that �		
� � 	�� � 
	� �

���
� 
 ���. If only this

order dominates, and for all other QPM orders the phase
mismatch is so large that their contribution is negligible,
we can derive the second harmonic intensity:

��� �

���	
 ����

�

�������
���

����
� ��

���		
���
	

��		
���
	�
� (17)

3. Periodic two-dimensional nonlinear
photonic crystals

Berger [16] proposed in 1998 to extend the concept of
periodic quasi-phase matching from one-dimension to two-
dimensions. This immediately increases the flexibility of
the nonlinear devices, and allows to phase match several dif-
ferent processes in different directions. Moreover, since the
techniques to modulate the nonlinear coefficient, e.g elec-
tric field poling, are in any case planar techniques, the ex-
perimental realization of 2D-modulated devices is straight-
forward. The first experimental realization was made by
Broderick et al. [17]. Some recent examples include simul-
taneous wavelength interchange [26], third and fourth har-
monic generation [27,28], and proposed realization of all
optical effects, e.g. all optical deflection and splitting [29].
The analysis of both one and two-dimensional NLPCs

can be modeled as a convolution between a periodic lattice
and a nonlinear motif, as shown in the two examples of
Fig. 8. In the case of a 1D structure, the lattice is a set of
equally spaced points (their distance is the lattice period
�), and the motif is a strip having a nonlinear coefficient
with a different sign than the background. Likewise, a 2D
NLPC is obtained by convolving a 2D lattice with a non-
linear motif. The two-dimensional lattice is defined by two
primitive, non-parallel vectors �� and ��, and the lattice
points are given by ��� � ��� � ���. The motif is some
two dimensional geometrical shape, e.g., circle, hexagon,
rectangle etc., having a nonlinear coefficient that is different
that the background. The pattern outside the motifs, may
be linear (zero nonlinearity, as for example is the case for
patterns made of poled and un-poled glass), or may have
an opposite sign of the nonlinear coefficient in the case of
domain inverted ferroelectric crystals). If the background
is nonlinear (with opposite sign to the motif nonlinear co-
efficient) the motif function denoted ���	, has values of 1
and (�1) instead of 1 and 0. This amount in a DC shift in
the Fourier transform of the overall structure function. The
result, as implied through Eq. (14) in Sec. 2 , is doubling of
the electric field conversion efficiency for a QPM process.
To simplify the following analysis we assume that the back-
ground has a zero nonlinear coefficient, while later the final
results are adjusted to account for non-zero background. In

www.lpr-journal.org © 2010 by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim



362 A. Arie and N. Voloch: Periodic, quasi-periodic, and random quad NLPCs

Figure 8 Examples of convolution for NLPC: (a) 1D

lattice, (b) a square 2D lattice with hexagonal motif.

Figure 9 The six lattice types, five of them (a–e) are Bravais lattices: (a) hexag-

onal, (b) square, (c) rectangular, (d) centered-rectangular, where the dashed

lines form a rectangle, (e) oblique. Panel (f) is a honeycomb lattice. The gray

area in each one of the lattices refers to its unit cell.

addition, we assume that the lattice area is restricted by a
rectangular interaction area ����.

The 2D periodic structures [30] can be classified by five
Bravais lattices: Hexagonal, square, rectangular, centered
rectangular and oblique, as can be seen in Figs. 9a–e. Note
that in the photonic crystals community, the hexagonal lat-
tice is identified as a “triangular” lattice, while “hexagonal”
or “honey-comb” lattice (in this community) is actually a
hexagonal lattice with a missing point in the middle of each
hexagon (see Fig. 9f).
As in the case of 1D NLPC, the nonlinearity as a func-

tion of space in an infinite 2D periodic structure can also
be written by a Fourier series:

������ � ���
�

��� ��������� � �� � ������� � (18)

where ���� is a normalized and dimensionless function, rep-
resenting the space dependence of the nonlinear coefficient
function. ��� are vectors in the reciprocal lattice [30],
defined by two primitive vectors that are orthogonal to the
real lattice primitive vectors, i.e.

�� � �� � ����� � (19)

The 2D reciprocal lattice points are given by

��� � 	�� � 
��� (20)

Significant build-up of the second harmonic wave re-
quires phase matching, i.e. ��� � ��� ���� � 	. As in
the 1D case, the vectorial phase-matching condition is just a
crystal-momentum conservation law: the required momen-
tum balance for the interaction is accomplished through a
reciprocal lattice vector (RLV). Usually it can be assumed
that if the phase matching condition is achieved by some

order �	�
�, it would be the only order which contributes
to the build-up of the second harmonic while all the other
orders contributes negligible oscillating terms. The anal-
ysis for two-dimensional periodic structures can now be
continued by rewriting the wave Eq. (4) as:

��� � ������� (21)

� ���
�

��
��
���� ���� ���
����� � ��� ����� � �� �

Similar to what we have done in the previous section for
a 1D lattice, it is convenient to analyze this interaction in the
Fourier space, by integrating (21) over a rectangular area
���� of length � and width� (see an example [31]). The
result is the second harmonic amplitude after an interaction
length of �:

������� �
������

����
������

��
����

���� �������� � ��� �

(22)
where �� � ��� � ��� is the phase-mismatch vector
and ���� � ��������� � �������� � is the integration area.
Setting ���� to zero outside the NLPC, the integration limits
can be extended to infinity and so:

������� �
����

����

����

����� � (23)

where ����� in this case is the two-dimensional Fourier
transform of ����. From (23) it can be seen that the am-
plitude of the second harmonic wave for a specific phase
mismatch value �� � ��� is proportional to ��������.

Let us assume that for the �	�
� order we reach perfect
phase matching,���� � ������ � 	. In this case, it
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is easy to calculate the second harmonic intensity after an
interaction length �:

��� �
������� �����

�

�������
���

����
�	 (24)

Hence, the interaction efficiency is proportional to the abso-
lute square of the relevant Fourier coefficient �����

�. Note
that this is almost identical to the expression in 1D NLPC,
in Eq. (15), and the only difference is that the 1D Fourier
coefficient ����

� is replaced by the two dimensional coef-
ficient, �����

�.
In the case of infinite area,���� consists of a distributed

set of Dirac delta functions (Bragg peaks), located at inte-
gral combinations of the reciprocal lattice base vectors. As
shown in [18] the Fourier coefficient becomes

��� �
�


��

�

�
���

��

�
 (25)

where 
�� � ������� � ������� is the area of the unit
cell [32], �� � ����	 ����, �� � ����	 ���� are the real
lattice primitive vectors and � is the Fourier transform of
the motif function. Eq. (25) shows the combined effect of
the lattice (through the unit cell area), the motif (through
its Fourier transform function �) and the QPM orders�, �
on the nonlinear process. For some specific motif functions,
���� is known analytically.
The effect of the lattice and motif in 2D NLPC was

studied in detail in [18] and [33]. All the six lattices shown
in Fig. 9 were analyzed, with four possible types of motifs:
circular, rectangular, triangle and hexagonal. To illustrate
these effects, let us consider here an example of a circu-
lar motif, with three possible lattices: hexagonal, square
and rectangular lattices. The circular motif and its Fourier
transform are:

���� � ����

�
���

	

�
�

�
�	 ��� � �


	 ��������
	 (26)

���� �
	

�� �
�����	�� ��  (27)

Table 1 displays the Fourier coefficient for a circular
motif for each one of the three lattice types. This enables to

determine the highest possible efficiency for a given struc-
ture and the required dimensions and shape of the motif.
Furthermore, it allows determining motif shapes that will
completely null the nonlinear conversion efficiency (which,
for example, can be useful to nullify unwanted processes).

Note that the Fourier coefficients in Table 1 are suitable
for the case in which the background has an opposite nonlin-
ear coefficient with respect to that of the motif (as is the case
for domain-inverted ferroelectrics). If the background has
zero-nonlinearity, the Fourier coefficients shown in Table 1
should be multiplied by ���. The effects of other motifs
can be calculated in a similar way using (25). Specifically,
a the effect of rectangular motif was analyzed in [18], while
triangular and hexagonal motifs were analyzed in [33].

The normalized efficiency is examined in Fig. 10 and
Fig. 11 as a function of the normalized radius ��� (the
ratio between the circle radius (�) and a primitive vector
length (�)) for two specific QPM orders: ��	�� � ��	 
�
and ��	 ��, in two out of the six lattice types, namely the
hexagonal and square lattices.

The first QPM order, ��	 
� is usually the most efficient
process in a 2D nonlinear structure, however it relies on
only one of the two primitive vectors. The second QPM
order, ��	 �� is usually the most efficient process that relies
on both primitive vectors, although in some cases, the ��	 ��
order and the ��	��� order [18], can be more efficient.

In the following analysis for each one of the different
lattices, the motif size is limited in order to avoid overlap
between motifs of adjacent lattice points, therefore the
normalized radii in Fig. 10 and Fig. 11 do not exceed 0.5.
The insets in those figures simply show the 2D NLPC for
specific ��� ratios and lattice, the black circles represent a
certain sign of the nonlinear coefficient, whereas the white
areas represent the opposite sign.

The square lattice can provide higher efficiency com-
pared to an hexagonal lattice, when a specific motif size is
chosen. Fig. 10 shows that for order ��	�� � ��	 
�, the
square lattice with a motif size of ��� � 
���, provides
the optimum efficiency �����

� � 
���. A higher efficiency
can be achieved in a rectangular lattice with two specific
primitive vectors [18], whereas lower efficiency is obtained
for the hexagonal lattice. For the order ��	�� � ��	 ��,
the maximum efficiency �����

� � 

� is achieved for
a square lattice with ��� � 
��� (Fig. 11). For com-

Lattice types Fourier coefficient ��� of a circular motif

Hexagonal �
���

��
�

��

�
�
�� � �� ���

��

�
���

�
�
�

�
�� � �� ���

�

Square �
��
��

�
��

�
�
�� � ��

��

�
���

�

�
�� � ��

�

Rectangular �
����
��

�
���

������ � ������
��

�
���

�
��

���

�
��

���

�

Table 1 Fourier coefficient of a circular motif
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Figure 10 Normalized efficiency for ����� �
��� �� order as a function of the motif radius to
primitive vector magnitude ratio. The plus-sign,

dashed and solid lines represent the efficiency

curves for the hexagonal, square and honeycomb

lattice, respectively. The inset shows the 2D

NLPC for a square lattice with ��� � �����.

Figure 11 Normalized efficiency for ����� �
��� �� order as a function of the motif radius to
primitive vector magnitude ratio. The plus-sign,

dashed and solid lines represent the efficiency

curves for the hexagonal, square and honeycomb

lattice, respectively. The inset shows the 2D

NLPC for a square lattice with ��� � ���	�.

parison, the highest efficiency of a periodic 1D structure
is ����� � ������ � ������ � ���.
The examples discussed in this section, are for normal-

ized radii that provide high efficiencies. However, Table 1
and Figs. 10, 11 can also be used to extract normalized radii
that nullify the conversion efficiency for specific orders
and lattices.

4. Quasi-periodic nonlinear photonic crystal

One limitation of the nonlinear periodic structures is that
they usually enable to phase match only processes whose
mismatch vectors correspond to integer multiples of a sin-

gle vector (in the 1D case) or to a vectorial sum of only two
base vectors (in the 2D case). However, the modulation of
the nonlinear susceptibility does not have to be periodic.
Nevertheless, in some specific cases it can still be efficient
and provide greater design flexibility for phase matching
several different processes. For example, one can simulta-
neously quasi-phase-match two processes by non-collinear
interactions in one-dimensional periodic structures [34].
Another method relies on multiplying the periodic structure
with another periodic structure of different periodicity [35].
Since we can use only the positive or negative values of
the nonlinear coefficient, the effect of this multiplication
is periodic reversal in the phase of the higher-frequency
periodic structure.
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Figure 12 (online color at: www.lpr-journal.org) The way that

rabbits breed was studied by Fibonacci in 1202. He assumed that

they follow the inflation rule shown in the inset, i.e. in each cy-

cle which takes one month, a mature pair can generate a new

junior pair, whereas a junior pair become mature pair. The se-

quence of mature and junior pairs is a quasi-periodic sequence. It

can be converted into a quasi-periodic nonlinear photonic crystal

by replacing these pairs with long (L) and short (S) sections of

modulated nonlinearity.

A general approach for simultaneous phase matching
of different processes relies on quasi-periodic modulation
of the nonlinear coefficient. Quasi-periodic structures are
ordered structures that lack translation symmetry. Proba-
bly the first person to encounter quasi-periodicity was Fi-
bonacci, who studied in 1202 the way that rabbits breed, see
Fig. 12. Shechtman et al. [36] discovered quasi-periodic or-
der in quasi-crystals, obtained by rapidly cooling of metallic
alloys. Artificially grown (man-made) quasi-periodic super-
lattices were first obtained by Merlin et al. [37] through al-
ternate growth of GaAs and AlAs layers by molecular beam
epitaxy. Ming et al. [11] demonstrated the use of Fibonacci
structures in nonlinear optics, e.g. for third harmonic gener-
ation. More general quasi-periodic modulations were stud-
ied in [12, 38, 39]. This concept was extended into two
dimensions in [40, 41].

A general method to design frequency converters that
will phase match any set of interacting waves, either in a 1D
or in a 2D configuration, is provided by the so-called gen-
eralized Dual Grid Method (DGM) [42–44]. This method
is well known in quasi-crystalline research, and is used for
constructing tiling models of quasi-crystals. An important
question that it addresses is how to design quasi-periodic
structures under the constraint that the structure require-
ments in nonlinear optics are usually defined in the recip-
rocal (Fourier) space. Unlike for periodic NLPCs, there
is no simple transformation between the reciprocal space
and real space. The method that will be described here [13]
provides a systematic method for designing the required
nonlinear structure.

After selecting the nonlinear medium of choice and the
appropriate operating temperature for a given frequency-
conversion application, one can calculate the required set
of mismatch vectors ����� �� � �� � � � � � �. The objec-
tive is to create an NLPC, represented geometrically by
the normalized nonlinearity function ����, that will simul-
taneously phase match all processes. As was described
in [13], once these mismatch vectors are known, one can
use de-Bruijnı́s dual grid method [42], in order to de-
sign the required quasicrystal. If the N mismatch vectors
are integrally-independent, one simply uses each vector
����� �� � �� � � � � � � to define a family of equally-spaced
parallel lines, separated by ��

�����
, and oriented in the direc-

tion of�����. The set of all � families constitutes the dual
grid, which is then used to define a set of N tiling vectors
����, and to calculate the integral linear combinations of
these tiling vectors that form the vertices of the tiles in the
desired quasicrystal. The final step is to decorate each tile
with an optimal motif, i.e. to decide which regions of the
tile will be altered such that the relevant components of
the quadratic dielectric tensor 	��� are positive, leaving the
remaining background with an unchanged negative 	���.
Let us demonstrate how this method is implemented in 1D
and in 2D.

4.1. One-dimensional design of
quasi-periodic NLPC

For the 1D case, let us assume that we need to simulta-
neously phase match two processes with phase mismatch
values of ��� and ���, as illustrated in Fig. 13a. In this
1D case, the two mismatch vectors lie on the same line. We
start by establishing an orthogonality condition in a space
with dimensionality equal to the number of required mis-
match vectors, two dimensional space in the present case.
For this purpose, we consider the two one-dimensional
mismatch vectors as a single vector containing two com-
ponents: �� � ������� ������. This vector spans a one-
dimensional subspace of a two dimensional vector space.
With this vector an orthogonality relation needs to be de-
fined in a two-dimensional space. For this purpose the
newly formed vector is expanded into a �� � non-singular
matrix by adding another vector, �� orthogonal to the first,
�� � �� � � , so that the newly formed matrix is:

� �

�
����� 


���
�

����� 

���
�

�
�

�
����

����

�
� (28)

Since we want to create a quasicrystal whose Fourier
transform will support the mismatch vectors of the nonlin-
ear processes, we require an orthogonality relation, similar
to the one used for periodic lattices, but this time in a higher
dimensional space. This relation is then projected into the
subspace that contains the problem. The orthogonality con-
dition we require is:

����
����� � ����� � (29)
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Figure 13 (online color at: www.lpr-journal.org) Illustration of the solution for designing a one-dimensional NLPC for multiple

collinear optical processes, using the dual grid method. In this example we show a design to phase match two processes. (a) The two

required mismatch vectors. (b) The dual grid, in which each family of lines is shown with a different color. (c) Tiling of the real-space

line according to the order in which lines of different families appear in the dual grid. (d) Associating a given duty cycle with each tiling

vector (assumed to be with 100% or 0% in this example). Positively-poled segments are shown in black, and negatively-poled segments

are shown in white.

Hence� is determined by:

� �

�
�

���

�
���

�
� ����� ��� � (30)

The different components of the� matrix are denoted
in the following way:

� �

�
���� ����

���� ����

�
� (31)

���� and ���� can be used to calculate the Fourier coeffi-
cients of every Bragg peak in the quasicrystal spectrum [13],
whereas the ���� and ���� are used to span the quasi-
periodic lattice using the dual grid construction. The dual
grid is required in order to select only part of the points
spanned by the base vectors of the quasi-crystal. If we
would have taken all the points, the outcome would be
dense filling of the space. Figs. 13b,c show how the dual
grid method is used.

Once the real lattice is defined, we attach motifs rep-
resenting the binary spatial modulation of the nonlinear
photonic crystal. Each motif consists into two parts – one
with ����� and the other with �����. Each such motif
thus has a specific ratio or duty cycle (which in this case
is the ratio of the length of the positive part to the tile
spacing). The duty cycles of the different motifs can be
used to optimize the efficiencies of the nonlinear processes.
We have found out [45] that in many cases, the highest
efficiencies are achieved when some of the motifs have
100% duty cycle while the others are with 0% duty cycle.
These are also the easiest to fabricate structures in terms
of required resolution. This is illustrated in Fig. 13d. In the
designed structure the waves that are generated by the two
processes will buildup, although sometimes not as smooth
as in a periodic quasi-phase-matched structure, see Fig. 14.
One interesting application that is enabled when two pro-
cesses are collinearly phase matched is cross-polarization
switching [46], where a type I second-harmonic-generation
process �� � �� � ��� followed by a type II difference-

Figure 14 (online color at: www.lpr-

journal.org) Evolution of the square abso-

lute of the generated waves in a quasiperi-

odic nonlinear photonic crystal. Inset

(a) is the nonlinear pattern as a function of

crystal position; inset (b) is the absolute

value of the Fourier transform �������;
(c) is an expanded view of the square ab-

solute of the two generated waves.
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frequency-generation process ��� � �� � �� leads to a
nonlinear switching of a � polarized fundamental beam into
a � polarized beam at the same frequency [47]. This polar-
ization switching scheme was recently realized in quasi-
periodically poled LiNbO3 [48].

Here we have considered simultaneous phase matching
of two processes, but any arbitrary number of processes can
be phase matched. For example, a one-dimensional three-
wave-doubler [45], which phase matches co-linearly three
second harmonic generation processes of fundamentals
beams with wavelengths 1530, 1550, and 1570 nm was
designed, fabricated by electric field poling in KTiOPO4
and experimentally tested.
By using different duty cycles, one can shape the spec-

tral response of NLPCs. For example, in [45], it was shown
that by choosing different duty cycles in a quasi-periodic
three-wave frequency doubler, one can have the strongest
doubling efficiency in either the first, or the second, or the
third wavelength. Moreover, it was shown in [45] that such
a device of length � is more efficient than three periodic
NLPCs (with length of ��� for each period). The ability
to shape the spectrum using different motifs can be further
extended for cascaded processes [49]. For example, we can
consider a third harmonic generation process, consisting
of two cascaded processes of second harmonic generation
� � � � �� and sum frequency generation � � �� � ��.
Here the generated wave of the second harmonic process
is needed to generate the third harmonic. In this case, it
might be useful to adiabatically change the efficiencies of
the two processes along the NLPC by changing the duty
cycles, so that the third harmonic can be generated with
higher efficiency [50].

4.2. Two-dimensional design of
quasi-periodic NLPC

2D Quasi-periodic NLPC may be required whenever we
need to phase match three or more processes, whose mis-
match vectors cannot be spanned as a vectorial sum of
two base vectors (i.e., they do not belong to a 2D periodic
reciprocal lattice). The same design algorithm that was
discussed for the 1D case can be also applied here. Consid-
ering an arbitrary set of� nonlinear ���� processes, each of
the processes is defined through a phase-mismatch vector
��

��� �� � �	 
 
 
 	 ��. The objective is to create an NLPC
that will simultaneously phase match all the nonlinear pro-
cesses. As in the 1D example that was outlined previously,
this is done by solving the problem at a �-dimensional
space and projecting the solution into the two-dimensional
space. The � two-dimensional mismatch vectors �����

�� � �	 
 
 
 	 �� are re-arranged as two �-dimensional vec-
tors. We then add�� ��-dimensional vectors orthogonal
to the first two. We then require orthogonality relations in
the �-dimensional space, in order to obtain � real-space
vectors that will span the real lattice (in 2D, we use only two
components of these vectors). A dual grid is used in order

to select only part of the points spanned by the base vectors.
A detailed discussion for the design of two-dimensional
NLPC is given in [33].
The dual-grid-method when applied to two dimensions

generates quasi-crystals whose tiles are parallelograms. To
create a nonlinear photonic crystal we need to associate
a motif with every tile. We have found that one can get
relatively high efficiency by simply using circular motifs
(having, say�����) centered at diagonals bisection point of
some parallelograms, while the remaining parts of the paral-
lelogram as well as the parallelograms of different size are
left unchanged, with�����. One can then use numerical op-
timization to find the optimal radii of these circular motifs.
We have recently designed and fabricated two different 2D
quasi-periodic NLPC for two applications [51]: a multi-
directional single frequency doubler (“SHG Fan”) and
a multi-directional multi-frequency doubler (“Frequency
Fan”) which is capable of nearly collinear doubling of
continuous wave radiation in the optical communication
C-band (1530–1570 nm) through angle tuning. The “SHG
Fan” was designed to phase match efficiently collinear SHG
of 1550 nm at three propagation directions: 0�, � 20�. The
“Frequency Fan” was designed to phase match efficiently
collinear SHG of the wavelengths 1530, 1540, 1550, 1560,
and 1570 nm at propagation directions of�25�,�12.5�, 0�,
12.5�, and 25�, respectively. Using these RLVs and angle
tuning it is possible to double (nearly) collinearly the en-
tire communication C-band (1530–1570 nm). Both NPQCs
were fabricated using electric field poling of Stoichiometric
LiTaO3 (SLT).
The lattice of both devices can be seen in Fig 5(a) and

(d), embedded upon a microscope image of a small part of
the NPQC. Also seen are their far field diffraction patterns
in Fig 5(b) and (e). These patterns represent the shape of
the reciprocal lattices for these two NLPCs. To generate
the NPLC pattern, every tile of the lattice is associated with
a physical building block. For easy fabrication we chose
circular motifs centered at the parallelogram’s diagonals
bisection points in which the nonlinear tensor component
is given at a positive value – positive nonlinear polarization
�����. The background is made with negative polarization
�����. We used a numerical optimization procedure to
find the best motifs radii for each tile, to give the best
efficiencies for the desired processes. The best results for
both devices were given for maximal circle motif within the
largest of the parallelograms (6.9 μm radius for the SHG
Fan and 4 μm radius for the Frequency Fan) and no circle
motifs at all within the other parallelograms. The devices
were tested [51] and showed very good agreement to the
theoretical predictions.

5. Random, or short-range order nonlinear
photonic crystals

For many years it was believed that nonlinear frequency
conversion should be done in ordered nonlinear crystals.
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In 2004, Baudrier-Raybaut et al. [15] showed that disor-
dered polycrystalline materials can be also used for effi-
cient nonlinear three wave mixing process. They used ZnSe
polycrystalline disordered samples, consisting of a large
number of single-crystal domains with random orientations,
random shapes and random sizes. Conversion efficiency
from near infrared to mid-infrared by difference frequency
generation was 20 times more efficient than that obtained
in an ordered ZnSe single crystal. The process in the or-
dered crystal was not phase matched, whereas the process
in the polycrystalline material was terms as “random phase
matching”. Whereas ZnSe is suitable for mid-infrared pro-
cesses, strontium barium niobate (SBN) [52] was proposed
earlier as a disordered nonlinear material for visible and
near-infrared processes. Non-collinear phase matched sec-
ond harmonic generation was demonstrated in disordered
SBN [14]. This was followed by demonstration of broad-
band frequency conversion of ultrashort pulses in [53]. The
effects of disorder and domain size were studied by Vidal
and Martorell [54]. Artificially designed 2D nonlinear crys-
tals, in which random rotations were applied to the unit cell,
were used [55] to broaden the spectral and angular accep-
tance bandwidth in frequency conversion applications, and
for cascaded third harmonic generation [56].

We can analyze the effect nonlinear mixing in a random
or short-range-order nonlinear photonic crystal, by consid-
ering an example of second harmonic generation in a simple
one-dimensionally modulated device, having � identical
ordered sections of length �. The disorder is attributed to
random phase �� that is accumulated between the ordered
sections. This is a simplified version of a 1D polycrystalline
crystal, where all the domains were assumed to have identi-
cal length �. The second harmonic field can be calculated
using Eq. (6):

������ � �
����

���	
��
�


����
� �

��

����

���


�	�  (32)

The term that multiplies the summation depends on the
phase mismatch in the small section of length �, through the

expression 
������
��

. In the phase matched case, �� � �,
this expression is simply equal to �, but even in the non
phase matched case, if this relatively short section is of the
same order as the coherence length, ��, we can have rea-
sonable contribution to the generated wave. The different
contributions are now summed, each one with its corre-
sponding random phase. The second harmonic intensity
will be proportional to

�����

����

���


�	�

�����

�

� � �

��������

��������� ���


��	��	��  (33)

The summation on the r.h.s. includes ��� � �� terms.
If N is very large and we have uniform random distribu-
tion of phases ��, then this term is averaged to zero. This
means that the total second harmonic power is � times
that of a single section of length �. On the other hand, if

we have non-phase-matched interaction in a long ordered
crystal of length ��, most of the second harmonic light
suffers destructive interference, and only a short section
whose length is �� at most will contribute constructively
to the output second harmonic. Hence If � � ��, the ran-
dom or short-range order NLPC is � times more efficient
than an ordered crystal. Note that the crystal is not really
“random”, since the build up of the field is made in short
ordered sections of length �. Therefore, this device should
be regarded as a short range order NLPC.
It is also interesting to consider the case of an ordered

crystal with phase-matched interactions. This can be still
treated using Eq. (32), for the special case in which all
phases �� are equal. In that case, the term in Eq. (33) is
� � ��� � �� � ��, which will result in much higher
efficiency with respect to the short-range order NLPC. An-
other conclusion we can derive from this simple analysis is
that the intensity conversion efficiency in short-range order
NLPCs scales linearly with the crystal length [15], whereas
in the case of a perfectly phase matched NLPC it scales
with the square of the crystal length.

6. Advanced nonlinear photonic crystals

6.1. Radial symmetric nonlinear photonic
crystals

There are additional “ordered” structures that do not exhibit
translation symmetry. One recent example is the annular
symmetry frequency converter. This structure consists of a
set of concentric rings, alternating between ���� and ���� .
The normalized, space-dependent part of the nonlinear coef-
ficient can be written analytically as a sign function of a ra-

dial cosine ���� � ��	
���� ��
�

��, where � �
�
�� � ��.

This kind of structure is fundamentally different than the
lattice-based nonlinear photonic crystals, which have con-
tinuous translation symmetry: translating the frequency
converters in a direction perpendicular to the input pump
wave usually does not change the power of the generated
waves. In contrary to that, the radial nonlinear photonic
crystal possesses only continuous rotational symmetry and
no translation symmetry. The Fourier transform of an infi-
nite annular structure with a period � consists of concentric
impulse rings with a period of ��

�
. If the Ewald sphere

intersects with one of these rings the interaction is phase-
matched.

We have produced an annular binary structure poled on
SLT by electric field poling with a period of 7.5 μm and an
active size of 8.75� 5mm, [57], as shown in Fig. 5(h) and
(j). Also seen is the far field diffraction pattern in Fig. 5(i).
Similar structures were also studied by Wang et al. [58].
The effect of phase mismatch was studied by measuring
the temperature dependent second harmonic generation
of a Nd:YLF laser through this device. Whereas the first
order, collinear phase matching exhibited a sharp, sinc-
like dependence on temperature, with full width at half
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maximum of 4.5 °C, the non collinear second order phase
matched SHG showed negligible temperature dependence
in the range of 100–200 °C. The reason is that in the Fourier
space, we have continuous lines (rings), rather than discrete
points that are obtained for lattice-based NLPCs. Therefore,
changing the operating temperature will simply bring the
second harmonic propagation vector to a new point on the
ring. The low dependence of the annular structure on phase
mismatch can be useful for easing the restrictions on exact
period length for specific processes when working non co-
linearly. A slight change in the period will only result in
a slight change of the walk-off angle and not in a sharp
efficiency change.

It was shown that by transverse phase matching [59,60],
the annular periodic structure supports the generation of
second-harmonic conical waves or Bessel beams, which
propagate within the nonlinear crystal and eventually evolve
into rings at the far field. It was also shown that spatio-
temporal toroidal waves can be generated in the annu-
lar periodic structure using counter-propagating ultrashort
pump pulses.

The periodic annular photonic structure is only one
specific example of a diverse family of radial photonic
structures displayed in Fig. 15. Fig. 15b shows a radial sym-
metry nonlinear photonic crystal consisting of concentric
rings with radii that are given by a quasi-periodic sequence.

Figure 15 Family of radial photonic structures. The black and
white areas denote negative and positive signs of nonlinear co-

efficients, respectively. (a) Periodic annular photonic structure

characterized by period �. (b) Aperiodic continuous radial pho-

tonic crystal characterized by several periods ��. (c) Discrete

periodic radial photonic crystal characterized by azimuthal angle

�. (d) Discrete periodic radial photonic crystal characterized by

azimuthal angle � and radial period �.

This structure can be designed to support arbitrary non-
linear processes in any direction [61]. Whereas the struc-
tures in Figs. 15a,b have continuous radial symmetry, those
in Figs. 15c,d have discrete radial symmetry. Fig. 15c has
only azimuthal dependence, whereas Fig. 15d has both az-
imuthal and radial dependence, and is the analog of two-
dimensional Cartesian nonlinear photonic crystal [16,18] in
cylindrical coordinates. Nonlinear interactions within these
structures were studied in two orientations, transverse and
longitudinal, in [61].

6.2. Nonlinear photonic crystals for beam
transformation

Quadratic nonlinear photonic crystals are often used for fre-
quency conversion, and in that case usually the pump and
generated waves are assumed to be plane waves or Gaussian
beams. In this subsection we consider a different aspect
that is enabled by these devices, namely the possibility to
transform the spatial properties of optical beams. Two di-
mensional modulation of the nonlinear coefficient enables
to control the phase and amplitude of the second harmonic
wave along the transverse coordinate [62]. This enables to
engineer the wavefront of the second harmonic wave [63].
Here we discuss two specific examples of nonlinear deflec-
tion [64] and the generation of optical vortex beams [19].
Nonlinear deflection was recently demonstrated by us-

ing a special two-dimensional modulation of the nonlinear
coefficient, which consists of a set of symmetric arcs that
form a periodic pattern in the propagation direction and a
chirped pattern in the transverse direction [64]. The spatial
modulation of the nonlinear coefficient to create a sym-
metric structure is described by ���� � �����	
��������
������

��, i.e. a periodic function in the x coordinate and
a chirped function in the y coordinate. This structure en-
ables continuous non-collinear phase matching in two sym-
metric directions (with respect to �) simultaneously. An
anti-symmetric deflector that deflects light only in one direc-
tion is described by ���� � �����	
������� � ������

��
Changing the pump wavelength simply changes the angle of
the generated second harmonic beam, as shown in Fig. 16.
Hence, the deflected second harmonic beam is controlled by
the pump wavelength and the phase matching conditions.

The structure was realized in a 0.5mm thick z-cut MgO-
doped stoichiometric lithium tantalate crystal, which was
electric-field poled. With poling period of 20.4 μm in the
� direction and chirp parameter ��� � �� ���� μm�2 in
the � direction, we have observed continuous angular de-
flection of the second harmonic wave up to 2.3� by varying
the pump wavelength from 1545 nm to 1536 nm at 150 °C.
Similar results were obtained by varying the crystal temper-
ature from 125 °C to 180 °C at 1540 nm pump wavelength.
The experimental results are reported in detail in [64].
Optical vortices are light waves possessing a phase

singularity. The Poynting vector of such beams contains
an azimuthal component, causing energy flow around the
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Figure 16 (online color at:

www.lpr-journal.org) Nonlinear

all-optical deflector [64]. (a) and

(b) are the nonlinear patterns for

a symmetric and anti-symmetric

deflector; (c) and (d) are their

corresponding Fourier spectrum,

where TMT denotes transverse

matching tolerance. (e) is a mi-

croscope picture of the mask that

was used for producing the sym-

metric deflector and (f) is the

far-field diffraction pattern of the

symmetric deflector.

singularity [65] and a ring-shaped intensity profile. Gen-
eration of optical vortex beams from a non-vortex funda-
mental beam by an optical frequency conversion process,
taking place within a twisted nonlinear photonic crystal
was proposed in [19]. This conversion is done without any
first-order linear refractive optics. In order to nonlinearly
generate a vortex beam one needs to modulate the nonlinear
coefficient also in all three dimensions. The nonlinearity as
a function of space should obey

���� �
��

��� � ��

��
�
� (34)

The axial component of this structure function is a peri-
odic modulation in � and is essentially regular��� order
quasi-phase-matching. Similarly, the transverse component
of the structure function breaks the infinitesimal rotational
symmetry, so angular momentum needs to be conserved up
to some quasi-angular momentum related to the structure.
Therefore, the outcome of a nonlinear wave mixing in such
a structured material can result in a radiation which pos-
sesses orbital angular momentum which is different than the
sum of angular momenta of the pump beams (unlike with a
rotationally invariant setup). This allows the generation of
a vortex beam from a non-vortex beam.
Realization of this structure requires three dimensional

modulation of the nonlinear coefficient at micron-scale res-
olution. Presently, the available methods to modulate the
nonlinear coefficient are planar methods, which allow mod-
ulation of only two out of the three needed dimensions.
A possible solution for constructing such devices is by
electric-field poling of ferroelectric materials into thin non-
linearly modulated planar plates and stacking them together.
The stacking could be made in the material polarization
direction (the Z direction). This structure should be used
when the pump field is linearly polarized in the same direc-

tion as the material polarization, utilizing the largest avail-
able nonlinear tensor component. Another option would be
to stack thin ferroelectric plates at the beams propagation
direction (the X direction). For a topological charge which
is equal to the phase matching order� � �, all the plates
would have the same poling pattern - where half of the
plain is positively poled and they would be stacked together
with a relative angular shift. Here, however, the material
and field polarizations would be perpendicular, utilizing the
��� tensor component (which exists in trigonal 3m crys-
tals, e.g. LiNbO3). Both options would be challenging to
implement since each plate should have a thickness of just
a few microns.

7. Discussion and summary

In this paper, three wave mixing processes in periodic,
quasi-periodic and random nonlinear photonic crystals were
analyzed. The main emphasis was on one-dimensional and
two-dimensional modulation of the second-order suscep-
tibility, which is currently feasible in various nonlinear
materials, e.g. ferroelectrics and semiconductors.
In the case of periodic structures, the efficiency of the

nonlinear interaction is governed by the choice of the lattice
and the nonlinear motif. Whereas a one-dimensional NLPC
has essentially a single type of lattice type (a set of equally-
spaced parallel lines) and motif (a strip having nonlinear
coefficient with opposite sign than that of the background),
the two-dimensional NLPCs offer rich selection of lattice
types (the five fundamental 2D Bravais lattices, as well as
more sophisticated lattices such as the honeycomb lattice)
and motif shapes (circular, hexagonal square, etc.).
Quasi-periodic nonlinear photonic crystals extend the

phase matching possibilities beyond the basic limitations
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of the modulation dimensions. For example, whereas a
one-dimensional periodic NLPC is efficient only for inte-
ger multiples of a fundamental phase mismatch value, any
set of wave-vectors can be designed to be efficient in a
quasi-periodic structure. Similarly, whereas a 2D periodic
structure is efficient only for phase mismatch values that
are integer combination of two fundamental vectors in a
2D periodic NLPC, a 2D quasi-periodic structure can be
designed to be efficient in any arbitrary set of 2D vector
combinations. We have outlined a systematic procedure for
designing a real-space NLPC, based on phase matching
requirements in the reciprocal space [13].

Short range order nonlinear photonic crystals are gain-
ing a lot of interest recently, after it was realized that in
some circumstances they can provide higher efficiency than
ordered (but not phase-matched) crystals [15]. Moreover,
they have wide spectral acceptance bandwidth, which can
be useful for converting ultrashort pulses [53]. Whereas
the first studies were made on naturally occuring structures
such as poly-crystalline ZnSe and SBN, recent results [55]
demonstrated the advantages of engineered “random” non-
linear devices. We have analyzed these structures using a
simple model and showed that the conversion efficiency in
these structures scales with the crystal’s length (whereas
in ordered and phase matched structures, it scales with the
square of the crystal length).

Quadratic nonlinear photonic crystals were traditionally
used for frequency conversion, and in that case usually the
pump and generated waves were assumed to be plane waves
or Gaussian beams. However, the ability to spatially modu-
late the quadratic nonlinear coefficient with high resolution
enables new possibilities. Some of the interesting prospects
are in controlling the spatial and polarization properties
of optical beams. This enables to transform a zeroth order
Gaussian beam to a higher order Hermite-Gaussian beam,
Bessel beam [59, 66] or a vortex beam [19], as well as to
rotate the polarization [46] or change the propagation direc-
tion [29,64] of the beam. The various new applications that
were discussed here indicate that in addition to their tra-
ditional use for frequency conversion, quadratic nonlinear
photonic crystals are excellent and flexible tools for all-
optical processing of optical beams. It is also interesting to
note that the concepts of quasi-periodic and random phase
matching are now considered in other regimes of nonlinear
optics, such as for selectively enhancing the generation of
specific high harmonic waves [67].
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