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Two frequency-cascaded and spatially simultaneous three-wave-mixing processes, each pumped

by a different frequency, are studied in a quasi-phase-matching crystal with chirped poling.

Theory, numerical simulation, and experiment all show that efficient two-process adiabatic

frequency conversion takes place over a broad range of input wavelengths. Experimentally, up to

five process cascades are obtained. Furthermore, it is demonstrated that reversing the chirp sign

results in a different conversion for the same input wavelength. This method can be applied to

generation of an all-optically tunable frequency comb. VC 2013 AIP Publishing LLC
[http://dx.doi.org/10.1063/1.4802597]

Three wave mixing (TWM) processes in quadratic non-

linear crystals are widely exploited for optical frequency

conversion.1 Such processes are utilized to generate laser fre-

quencies that are not available directly from laser action. By

combining two TWM processes, frequency conversion

between near or far frequencies can also be obtained.2 In

order for a TWM process to be efficient, a phase-matching

condition has to be satisfied.1 This can be achieved by quasi

phase matching (QPM), in which the sign of the nonlinear

coefficient of a ferroelectric crystal is modulated along the

crystal.3 For a single process, QPM is easily provided, while

simultaneous QPM of multiple processes remains a chal-

lenge, and comes at the expense of conversion efficiency.2,3

Recently, an analogy between TWM processes and

interaction of few-state atoms with electromagnetic (EM)

fields has been utilized to obtain favorable properties for fre-

quency conversion.4–10 Suchowski et al. and Moses et al.
demonstrated efficient and broadband sum frequency genera-

tion (SFG)4,5 and difference frequency generation (DFG).6

The increase in efficiency and bandwidth was attributed to

the use of an adiabatically chirped QPM grating, which

mimics the atomic process of rapid adiabatic passage.11 In

other works,7,8 various QPM architectures were suggested as

analogies of atomic adiabatic elimination11 or stimulated

Raman adiabatic passage.11 In these schemes, two frequency-

cascaded TWM processes take place simultaneously, with

fixed or controllably varying efficiencies along the interac-

tion, and generate a new frequency without an intermediate

one. In yet another publication,10 Rangelov et al. theoretically

demonstrated that efficient and broadband conversion can be

performed via two spatially simultaneous and frequency-

cascaded SFG processes in an adiabatically chirped QPM gra-

ting, with one pump for both processes.

In this letter, efficient and broadband frequency

conversion is demonstrated experimentally, where frequency-

cascaded SFG and DFG processes are performed simultane-

ously, pumped by two separate laser frequencies, reaching up

to a five-process cascade. Furthermore, theory and experi-

ment show that reversal of the chirp sign results in a different

conversion process for the same input wavelength.

Four processes are considered here (see insets of Fig. 1).

Two of them are upconversion of x1 with each pump,

x1 þ xp1
¼ x2a and x1 þ xp2

¼ x2b, and two processes are

downconversion of the generated waves: x2a � xp2
¼ x3a

and x2b � xp1
¼ x3b. x1;xp1

and xp2
are the input, first

pump and second pump frequency, respectively, where we

choose xp1
> xp2

without loss of generality. We then have

x3a ¼ x1 þ xp1
� xp2

> x1 > x3b ¼ x1 þ xp2
� xp1

, so

conversion of x1 to x3a (x3b) is upconversion (downconver-

sion). We work in the rotating frame defined by AjðzÞ
¼ ~Ajexp½ifjðzÞz�, where f1ðzÞ ¼ �Dk1ðzÞ, f2aðzÞ ¼ 0, f3aðzÞ
¼ �Dk2ðzÞ, f2bðzÞ ¼ Dk3ðzÞ � Dk1ðzÞ, f3bðzÞ ¼ Dk3ðzÞ � Dk1

ðzÞ � Dk4ðzÞ. ~Aj is the complex amplitude of the field with

frequency xj, and DkjðzÞ is the phase-mismatch of the j-th
process. For a linearly chirped crystal, we use the approxi-

mate relation DkjðzÞ ¼ Dk0j þ 2p
KðzÞ, where KðzÞ is the local

QPM modulation period, and Dk0j is the dispersion phase

mismatch of the j-th process, i.e., Dk01 ¼ k1 þ kp1 � k2a,

Dk02 ¼ kp2 þ k3a � k2a;Dk03 ¼ k1 þ kp2 � k2b, and Dk04 ¼ kp1

þ k3b � k2b. Using the plane-wave and constant pump

approximations, the coupled wave equations for this system

are dw=dz ¼ iMðzÞwðzÞ, where wðzÞ¼½A1 A2a A3a A2b A3b �T
is the amplitudes vector and

M ¼

Dk1 j1;2a 0 j1;2b 0

j2a;1 0 j2a;3a 0 0

0 j3a;2a Dk2 0 0

j2b;1 0 0 Dk1 � Dk3 j2b;3b

0 0 0 j3b;2b Dk1 þ Dk4 � Dk3

2
6666664

3
7777775

(1)

is the coupling matrix. Here j1;2a ¼ A�p1
vð2Þx2

1=k1c2; j1;2b

¼ A�p2
vð2Þx2

1=k1c2; j2a;3a ¼ ~Ap2
vð2Þx2

2a=k2ac2, and j2b;3b

¼ ~Ap1
vð2Þx2

2b=k2bc2, where jij ¼ ðx2
i kj=x2

j kiÞj�ji, are the

effective coupling coefficients. vð2Þ is the second-order

nonlinear coefficient of the crystal, c is the speed of light,

and kj ¼ njðxjÞxj=c is the wavenumber of the wave with

frequency xj. The remainder of the analysis will be per-

formed by studying the eigenvalues of the coupling matrix

M, using arbitrary parameter values chosen for the sake of

clarity. This approach will lead to an analogy with avoided

crossings of EM coupled electronic eigenstates in atoms or

molecules.11
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First, note that when there is no coupling, i.e., ji;j ¼ 0

for all i and j, the matrix is diagonal. This means that each

wave evolves as AjðzÞ ¼ Ajð0ÞexpðihjzÞ, where hj is its eigen-

value, and if all but one of the amplitudes are nonzero, then

the system is in a stationary state. In Fig. 1, the eigenvalues

in the absence of coupling are plotted vs. the local QPM pe-

riod in black solid lines. The eigenvalues of the two up-

converted waves (h2a and h2b) are independent of the QPM

period, whereas the eigenvalues of the input wave h1 and the

two-process products h3a and h3b are inversely proportional

to the QPM period. At each crossing of two of these black

solid lines hi ¼ hj for some pair of i and j. Since hj deter-

mines the phase for Aj, hi ¼ hj means that the total phase

difference between Ai and Aj is zero, i.e., if these two waves

can be coupled by a TWM process, it would be phase-

matched at this point. The phase-matching points of the four

TWM processes considered here correspond to the crossings

that are marked with red asterisks. The two additional cross-

ings, marked with green diamonds, correspond to three-photon

adiabatic elimination processes.7 Due to their inherently low

efficiency as compared to phase-matched TWM processes,

they are neglected here.

The eigenvalues in the presence of coupling are plotted

in Fig. 1 as dashed blue lines. Note that the eigenvalues in

the absence of coupling (solid black lines in Fig. 1) depend

only on the material dispersion and the QPM period, whereas

when coupling is present, the dashed blue lines bend. They

bend such that the crossings are avoided, where greater

pump intensity leads to greater bending. Far from crossings,

the dashed and solid lines are near. The physical interpreta-

tion of this graphical phenomenon is that, due to the cou-

pling, energy in a single frequency is no longer a stationary

state of the system near crossings (i.e., phase-matching). If

such a state is obtained near a crossing, energy will be trans-

ferred from one frequency to another as light propagates

along the z axis. This is another way of explaining how

phase-matching increases the amount of energy being trans-

ferred between two frequencies. The actual stationary states

of the system are the ones that correspond to the eigenvalues

along the dashed blue lines.

According to adiabatic theorem,11 a system placed in a

stationary state and experiences only adiabatic changes will

remain in the same stationary state throughout its evolution.

For a TWM process with phase-mismatch Dk and coupling

coefficient j, it is sufficient that jdDk=dzj�jjj at the crossing

in order for a QPM chirp rate to be considered adiabatic.4,5,10

Such adiabatic evolution can be described graphically: if the

system is “on” one of the dashed blue lines in Fig. 1, and the

crystal is chirped adiabatically with increasing period, then

the system will follow the same dashed line, going from left

to right, as light propagates along the crystal. For example,

consider the case where the crystal is chirped from K
¼ 14:9 lm to K ¼ 15:4 lm, and only the x1 wave enters the

crystal along with the two pumps. Starting at the point

marked by the purple arrow in the center of Fig. 1, the sys-

tem will then follow the dashed blue line from left to right,

until it converges with the solid line of h3b. We conclude that

energy will be efficiently transferred from x1 to x3b, result-

ing in downconversion. We note that this path also crosses

the solid line of h2b, so we expect the energy to go through

x2b on its way from x1 to x3b. This can be viewed as two

cascaded adiabatic processes, x1 ! x2b and x2b ! x3b.

Conversely, if the crystal was chirped from K ¼ 15:4 lm to

K ¼ 14:9 lm, then the system would start at the dashed blue

line near h1 at the bottom right of Fig. 1, and follow this line

to the left, corresponding to upconversion of x1 to x2b.

Hence, for the same input wave, a different frequency will

be generated, depending on whether the chirp is positive or

negative. Finally, note that changing the input frequency x1

results in horizontal translation of the eigenvalues plot (verti-

cal translation is avoided by our choice of the rotating frame,

which is defined such that h2a ¼ 0). As long as the shift is

such that all of the crossings are still within the chirp range

of the crystal, the same arguments can be applied. The same

chirped crystal can thus facilitate these processes for a wide

range of input frequencies.

Numerical simulations were conducted in order to verify

the theoretical predictions. In the simulations, Nd:YLF (kp1

¼ 1047:5 nm) and Nd:YAG (kp2
¼ 1064:5 nm) lasers were

used as pumps, with Ip1
¼ Ip2

¼ 50 MW=cm2. The nonlinear

medium was a 35 mm long KTiOPO4 crystal, with vð2Þ

¼ 32 pm=V (Ref. 12) and QPM period linearly chirped from

K ¼ 14:38 lm to K ¼ 14:92 lm, kept at a temperature of

100 �C. Sellmeier equations13,14 were used to account for

dispersion.

The simulations reveal four different scenarios of efficient

adiabatic frequency conversion, where each corresponds to a

different path in the eigenvalues plot. The difference between

the four cases is the chirp sign and the input wavelength. As

examples, input wavelengths of 1509 nm and 1542 nm were

used in the simulations presented in Figs. 2 and 3.

For the first case, a positive chirp was used with an input

wavelength of k1 ¼ 1509 nm. The resulting intensities, nor-

malized to the input intensity, are displayed in Fig. 2(a), with

the corresponding eigenvalues plot in Fig. 2(b). Fig. 2(a)

shows that energy is efficiently downconverted from k1

¼ 1509 nm to k3b ¼ 1544:5 nm through k2b ¼ 624:2 nm.

(The k1=k2b ¼ 2:42 photon energy ratio is the reason that the

normalized peak intensity at k2b ¼ 624:2 nm is greater than

1. The additional energy comes from the second pump). This

corresponds to the picture revealed in Fig. 2(b), where the

system follows the dashed line marked with arrows, which

goes from h1 to h3b through h2b. The inset of Fig. 2(a) shows

FIG. 1. Eigenvalues of the coupling matrix M in the absence of coupling

(solid black lines) and with nonzero coupling (dash blue lines). Each inset

shows one cascade on the frequency axis.
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that some energy was transferred to k2a ¼ 618:3 nm due to

non-adiabatic coupling. This is a result of the non-ideal dy-

namics, i.e., the system does not perfectly follow the ideal

path, which would require an infinitely slow chirp rate.

In the second case, the period was also positively

chirped, but the input wavelength was k1 ¼ 1542 nm. Fig.

2(c) shows that in this case the input energy is transferred to

k2a ¼ 618:3 nm, where the inset displays relatively low non-

adiabatic conversion to other wavelengths. Once again, the

eigenvalues plot, shown in Fig. 2(d), describes the same sce-

nario, where the path the system ideally follows goes from

h1 to h2a.

For the third and fourth cases, the same two input wave-

lengths were used, but this time the QPM period was nega-

tively chirped. The results, displayed in Fig. 3, show the same

behavior and correspondence with the eigenvalue representa-

tion as those obtained with the positive chirp. However, with

the negative chirp, the energy at k1 ¼ 1509 nm was transferred

to k2b ¼ 624:2 nm, while k1 ¼ 1542 nm was upconverted to

k3a ¼ 1475:1 nm. This is in contrast to previously considered

adiabatic interactions in chirped crystals, where either the

chirp sign did not affect the outcome, or that upon reversal of

the chirp sign, the same conversion would take place through a

different adiabatic path.4,5,10

As mentioned above, 1509 nm and 1542 nm were each

an example of the characteristics of some input wavelength

interval. The extent of these intervals is revealed in Figs. 4(a)

and 4(b), which display the normalized output intensities vs.

the input wavelength for positive and negative chirp, respec-

tively. The four cases are distinct in these figures: the first

case (k1 ! k3b) takes place over a 30 nm full width at half

maximum (FWHM) band around 1505 nm, while the second

case (k1 ! k2a) spans the interval from 1520 nm to 1564 nm,

both seen in Fig. 4(a). In Fig. 4(b), the third case (k1 ! k2b)

is obtained for 1490 nm < k1 < 1534 nm, and the fourth

case (k1 ! k3a) has a 32 nm FWHM bandwidth around

1549 nm. Clearly, reversing the sign of the chirp drastically

changes the interaction for any input wavelength over a

75 nm interval.

These theoretical predictions were tested experimen-

tally, using the same chirped KTiOPO4 crystal as in the sim-

ulation. The experimental conditions were similar to the

ones used in simulation, however due to technical constraints

they were not identical. First, the beam radii in the experi-

ment were �55 lm for each pump beam and �100 lm for

the input beam. The Rayleigh range for all three beams was

approximately 16 mm in the crystal. Second, the two actively

Q-switched pump lasers used in the experiment had pulse

durations of sp1
� 13:5 ns and sp2

� 4:5 ns. Correspondingly,

the peak pumps intensities inside the uncoated crystal were

Ip1
� 6 MW=cm2 and Ip2

� 105 MW=cm2, where Fresnel

reflections were taken into account. The input wave was gen-

erated by an optical parametric oscillator (OPO), pumped by

the Nd:YAG laser, and had a similar pulse duration to that of

the Nd:YAG. The OPO produced a distorted Gaussian beam,

with peak intensity of �1:6 MW=cm2. The pulses of the two

10 kHz Q-switched lasers were synchronized by a delay gen-

erator that fed electrical signals to their acousto-optic modu-

lators. In practice, the temporal difference between the peaks

of two pulses randomly varied by as much as tens of nano-

seconds. Each experimental result here is an average of 10

measurements, where each measurement had an integration

time of 1 ms, so each result represents an averaging over 100

laser pulses, normalized according to the input power. These

results take background noise and Fresnel reflections into

consideration, such that they represent internal conversion

efficiency.

FIG. 2. Numerically obtained intensities along a positively chirped crystal

(insets have the same horizontal axis as figures). The adiabatic interactions

in (a) and (c) follow the paths marked with arrows in the coupling matrix

eigenvalues plots in (b) and (d), respectively. k1 ¼ 1509 nm is (a) and (b).

k1 ¼ 1542 nm is (c) and (d).

FIG. 3. Same as Fig. 2 for a negatively chirped crystal.

FIG. 4. Numerical results of output intensity vs. input wavelength for (a)

positive chirp and (b) negative chirp (insets have the same horizontal axis as

figures).
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The experimental results contain all the salient features

of theory and simulation, despite the low intensity of the

Nd:YLF pump laser and the partial spatial and temporal

overlap of the beams and pulses, which limit the experimen-

tal two-process conversion efficiency to 3.77% at most. Figs.

5(a) and 5(b) show the normalized output power experimen-

tally obtained for positive and negative chirp, respectively.

The top inset of Figs. 5(a) and 5(b) reveals that when the

input k1 was converted to k3b (k3a) through k2b (k2a), a sig-

nificant amount of energy remained in the intermediate

wavelength at the end of the interaction. This is a result of

the low pump intensity, graphically manifested as a reduced

bending of the dashed lines. The bottom insets of Figs. 5(a)

and 5(b) show low power resulting from weak non-adiabatic

coupling, in correspondence to the simulation results (see

insets of Figs. 4(a) and 4(b)).

In the experiment, for a certain range of input wave-

lengths, the product of the two-process conversion was itself

converted. The reason was that the acceptance bandwidth of

the two-process conversion was greater than the difference

between the frequencies of the two pump lasers, so the product

was inside the acceptance bandwidth of the same two-process

conversion. For example, for positive period chirp, the product

x3b can participate in the SFG process x3b þ xp2
¼ x4b, fol-

lowed by the DFG process x4b � xp1
¼ x5b. Fig. 6 shows the

optical spectrum analyzer measurement for this case, where

k1 ¼ 1489 nm; k3b ¼ 1523:6 nm and k5b ¼ 1559:8 nm. The

same was observed for 1488:7 � k1 � 1496:9 nm, with nor-

malize power up to 5� 10�4. Furthermore, k5b is within the

acceptance bandwidth of the adiabatic SFG process with the

first pump (see Fig. 4(a)), i.e., x5b þ xp1 ¼ x6a. This product

was also observed in the experiment, with a peak normalized

power of 1:7� 10�2. A similar argument holds for negative

chirp, where we have x3a þ xp1
¼ x4a, followed by x4a

�xp2
¼ x5a and then x5a þ xp2 ¼ x6b. These processes

were observed experimentally as well, with peak normalized

powers of 5:4� 10�4 and 3:8� 10�3 for k5a and k6b, respec-

tively. Note that, overall, five frequency-cascaded processes

were performed simultaneously.

These multiple frequency-cascaded processes suggest an

interesting application: an all-optically tunable frequency

comb. The pump frequencies should be chosen such that

the difference between them is much smaller than the

two-process conversion bandwidth. There will then be many

cascades of conversion, since each cascade-product will still

be within the acceptance bandwidth of the same process that

generated it. The spectral spacing between these products

would be equal to the spectral spacing between the two

pumps. In this manner a frequency comb can be obtained,

where the central frequency and teeth spacing can be all-

optically tuned by tuning the frequencies of the input and

pumps. High efficiency for many cascades can be obtained

by placing the chirped crystal in a resonator, or using CW

lasers with a fiber-coupled chirped QPM waveguide3 in a

fiber loop. Note also that energy that remains in an interme-

diate wavelength after one pass through the crystal will get

converted to one of the comb “teeth” in the next pass. For

example, see the h2a ! h3a path that goes from left to right

on the dashed blue line of Fig. 2(d).

In conclusion, multiple-process broadband adiabatic fre-

quency conversion has been demonstrated theoretically and

experimentally. Up to five frequency-cascaded processes

were demonstrated by experiment. Furthermore, a chirped-

crystal system was experimentally shown to perform differ-

ent conversion for the same input wavelength, depending on

the chirp sign. Finally, it was explained how the same

method can be used to generate all-optically tunable fre-

quency combs.

1R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, Waltham, MA,

2008).
2S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, Prog. Opt. 47, 1–73

(2005).
3D. S. Hum and M. M. Fejer, C. R. Phys. 8, 180–198 (2007).
4H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78,

063821 (2008).
5H. Suchowski, V. Prabhudesai, D. Oron, and Y. Silberberg, Opt. Express

17, 12731–12740 (2009).
6J. Moses, H. Suchowski, and F. X. Krtner, Opt. Lett. 37, 1589–1591

(2012).
7G. Porat, Y. Silberberg, A. Arie, and H. Suchowski, Opt. Express 20,

3613–3619 (2012).
8G. Porat and A. Arie, J. Opt. Soc. Am. B 29, 2901–2909 (2012).
9S. Longhi, Opt. Lett. 32, 1791–1793 (2007).

10A. A. Rangelov and N. V. Vitanov, Phys. Rev. A 85, 045804 (2012).
11D. Tannor, Introduction to Quantum Mechanics: A Time-Dependent

Perspective (University Science Books, Sausalito, CA, 2007).
12D. N. Nikogosyan, Nonlinear Optical Crystals (Springer, New York, NY,

2005).
13K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, Appl. Phys. Lett. 74,

914–916 (1999).
14S. Emanueli and A. Arie, Appl. Opt. 42, 6661–6665 (2003).
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positive chirp and (b) negative chirp (insets have the same horizontal axis as

figures).

FIG. 6. Optical spectrum analyzer measurement showing multiple adiabatic
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