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Abstract: We discuss theoretically and demonstrate experimentally the
robustness of the adiabatic sum frequency conversion method. This tech-
nique, borrowed from an analogous scheme of robust population transfer in
atomic physics and nuclear magnetic resonance, enables the achievement
of nearly full frequency conversion in a sum frequency generation process
for a bandwidth up to two orders of magnitude wider than in conventional
conversion schemes. We show that this scheme is robust to variations in the
parameters of both the nonlinear crystal and of the incoming light. These
include the crystal temperature, the frequency of the incoming field, the
pump intensity, the crystal length and the angle of incidence. Also, we
show that this extremely broad bandwidth can be tuned to higher or lower
central wavelengths by changing either the pump frequency or the crystal
temperature. The detailed study of the properties of this converter is done
using the Landau-Zener theory dealing with the adiabatic transitions in two
level systems.
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1. Introduction

Nonlinear frequency conversion via three wave mixing process is a fundamental concept in
the field of nonlinear optics. In this process, light of two colors is mixed in a nonlinear crys-
tal, resulting in the generation of a third color with their sum or difference frequency. These
processes (also termed frequency up-conversion and down-conversion, respectively) usually
exhibit a tradeoff between the conversion bandwidth and the conversion efficiency.

Recently, we have shown that the sum frequency generation (SFG) process in the unde-
pleted pump approximation can be mathematically formulated and geometrically visualized in
complete analogy with the framework of a two-level system, as introduced by Bloch in NMR
and Feynman and coworkers in atomic physics [1, 2]. In this regime the conversion process is
governed by a set of two linear coupled wave equations whose properties depend on two param-
eters: the phase mismatch along the propagation direction and the coupling coefficient, which
is a function of both the characteristics of the pump wave and the properties of the nonlinear
crystal. The geometrical visualization gives physical intuition to the process of SFG [3].

In the usual scheme of sum frequency generation, these two parameters are assumed to be
constant, and thus the evolution of these waves along the propagation axis can be solved analyt-
ically [4, 5, 6]. Only few more analytic solutions of this form of linear coupled wave equations,
which exhibit SU(2) dynamical symmetry, are known. Those were recently summarized in the
context of atomic physics by Torosov et. al. [7], where most of them have not been imple-
mented in the field of frequency conversion. Two approximate solutions to this set of equations
are worth mentioning in this context. The first is the perturbative approximation, which in the
realm of frequency conversion is the case of weak coupling between the signal and idler waves.
This approximation was termed as the ’unamplified signal approximation’, and corresponds to a
low signal-to-idler conversion efficiency. With the perturbative approximation, the dynamics of
the process can be fully solved either in real space or using Fourier domain as done by Imeshev
et. al. [8]. The second approximation is the adiabatic approximation. By exploring the applica-
tion of the rapid adiabatic passage (RAP) scheme [6] in the realm of frequency conversion, we
have shown that the requirements of high efficiency and broad bandwidth can be reconciled,
by adiabatically varying the phase mismatch parameter along the propagation, allowing nearly
complete transfer of energy from one wavelength to another in a robust manner [3]. The de-
tailed study of the properties of this converter is done using the Landau-Zener theory dealing
with adiabatic transitions in two level systems [15, 16].

The implementation of this converter is done by aperiodically poling in a quasi-phased
matched crystal. Such structures were extensively studied in the last decade, mainly due to
the fact that they enable the tailoring of desired phase mismatching function in a simple man-
ner. Linear chirp gratings were shown to have broad response also in second harmonic genera-
tion (SHG), difference frequency generation (DFG) and optical parametric amplifier (OPA) and
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other nonlinear processes [9, 10, 11, 12]. Random structures [13] and segmented structures [14]
were also suggested to improve bandwidth response in nonlinear processes, but again with poor
efficiency. It should be noted that the dynamics of different nonlinear processes are affected
differently by these aperiodic structures. Only in SFG process, the geometrical visualization on
Bloch sphere, and the suggested adiabatic solution are valid.

In this paper, we demonstrate the robustness of the adiabatic SFG scheme to most of the
parameters which control the efficiency of the process. These include the crystal temperature,
the frequency of the incoming field, the pump intensity, the crystal length and the angle of
incidence. We show that contrary to the conventional perfect phase-matched crystal, where
simultaneous matching of these control parameters are needed, in this scheme, the conversion
efficiency is insensitive to change of one or more of those parameters. Also, we demonstrate
that this ultra broad bandwidth converter can be tuned to higher or lower central wavelengths
by changing either the pump frequency or the crystal temperature.

2. Theoretical analysis

2.1. Dynamics and Geometrical Representation of Sum Frequency Generation Process

In the undepleted pump approximation, the pump amplitude is assumed constant along the
nonlinear crystal, and the following normalized coupled equations for the signal and idler can
be constructed [4]:

dÃ1

dz
+

1
vg1

dÃ1

dt
= −iκÃ3e−iΔkz (1)

dÃ3

dz
+

1
vg3

dÃ3

dt
= −iκ∗Ã1e+iΔkz (2)

where Δk = k1 + k2 − k3 is the phase mismatch, z is the position along the propagation axis,
κ = 4πω1ω3√

k1k3c2 χ(2)A2 is the coupling coefficient. The normalized signal and idler amplitudes are:

Ã1 = c
4ω1

√
k1

πχ(2)A∗
2
A1 and Ã3 = c

4ω3

√
k3

πχ(2)A2
A3, where ω1 and ω3 are the frequencies of the

signal and idler, respectively, k1 and k3 are their wave numbers, vg1 and vg3 are their group ve-
locities, c is the speed of light in vacuum, A1, A2, A3 are the signal, pump and idler amplitudes,
respectively, and χ(2) is the 2nd order susceptibility of the crystal (assumed to be frequency
independent). In the case where the temporal envelope of the waves are much longer than
the length of the crystal (i.e. where we consider monochromatic, quasi-monochromatic laser
beams, or stretched ultrashort pulses), one can omit the influence of the waves’ group veloci-
ties. In this paper we will deal with quasi-monochromatic laser beams. In the case of ultrashort
pulses upconversion, one should first stretch the pulse, in order to minimize the deleterious ef-
fect of group velocity mismatch and group velocity dispersion. Typically, a pulse length of more
than 1ps would suffice for an interaction in the visible and near infrared. The converted pulse
would be re-compressed to a transform-limited pulse after exiting from the nonlinear crystal.

As discussed earlier, these coupled wave equations, have the same form as those describing
the dynamics of quantum mechanical two level systems. Here, the time evolution is replaced by
propagation in the longitudinal z-axis, and the detuning Δ is replaced by the phase-mismatch
Δk value; also, the population of the ground and excited states are analogous to the magni-
tude of the signal and idler fields, respectively. This analogy is further detailed in Ref. [3]. To
obtain a physical intuition of the SFG dynamics, we use the geometrical picture of this pro-
cess, where we adopt the formulation of Feynman et. al. [2]. In this framework, a real three
dimensional vector equation can explore the dynamics of this problem, and any z-dependent
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function of Δk (z) and κ (z), can be visualized as a trajectory on the surface of an upconver-
sion Bloch sphere. The loss-free evolution equations can be written as a single vector preces-
sion equation d�ρSFG

dz =�g×�ρSFG, where the three dimensional state vector is defined as follows
�ρSFG = (U,V,W ) =

(
A∗

3A1 +A3A∗
1 , i(A∗

3A1 −A3A∗
1) , |A3|2 −|A1|2

)
, and includes the coherence

between the signal and idler amplitudes along the propagation. In particular, its z component
(WSFG) gives information about the conversion efficiency. The south pole �ρ = (0,0,−1) cor-
responds to zero conversion (A3 = 0), while the north pole �ρ = (0,0,1) corresponds to full
conversion. In between, the conversion efficiency is defined as: η = (WSFG +1)/2. The rotat-
ing vector (also known as the torque vector), �g = (Re{κ}, Im{κ},Δk), represents the coupling
between the signal and idler frequencies, and the size of the phase mismatch parameter. This
analogy was extended to include the semi-phenomenological decay constants T1 and T2, which
appear in the original Bloch equations, and in our context are characteristic decay lengths rather
than times [3]. As seen, the evolution of the SFG process is dictated by Δk (z) and κ , and in
most of the cases, no analytical or approximate solution exists. In such cases, the geometrical
visualization could be helpful, where the trajectory of the SFG process, for any function of
Δk (z) and κ (z), is guaranteed to be on the surface of the SFG Bloch sphere.

2.2. Adiabaticity criteria and application of Landau-Zener theory

One important approximation to this dynamical problem is the adiabatic solution. In this case,
the first derivative of the phase mismatch parameter along the propagation axis, also known as
the sweep rate, should vary slowly with respect to the square of the coupling term, i.e.

∣∣∣∣dΔk
dz

∣∣∣∣ <<

(
Δk2 +κ2

)3/2

κ
. (3)

For an efficient and broadband process to occur, the phase mismatch parameter, Δk (z) should
also be very large compared to κ , and should change adiabatically from a large negative value to
a large positive value, i.e. |Δk|>> κ, Δk(z = 0) < 0, Δk(z = L) > 0. These adiabatic constraints
were derived by following their analogous dynamical counterparts in the RAP mechanism,
where a strong chirped excitation pulse scans slowly through the resonance to achieve robust
full inversion [7, 17, 18]. If the rate of variation is not slow enough, or the coupling coefficient is
not large enough, this inequality will not be satisfied and the conversion efficiency will be poor.
Clearly, in any practical realization, where the crystal length is finite, the adiabaticity condition,
corresponding to a conversion efficiency of 100%, can only be asymptotically reached. Note
again, that all of the adiabatic constraints have to be satisfied in order to achieve this robust
mechanism. This explains why in the case of constant phase mismatch (such as in periodically
poled crystal), where the sweep rate is zero, and although the requirement of Eq. 3 is satisfied,
adiabatic conversion would not occur.

When the phase-mismatched Δk(z) is varied linearly along the crystal, a simple parameter
for the degree of adiabaticity appears. In the quantum literature it is known as the Landau-Zener
criterion [15, 16], which in the frequency conversion realm can be written as:

ηLZ (z → ∞) = 1− e
− 4κ2

π|dΔk/dz| . (4)

This analytical expression gives the signal-to-idler conversion efficiency of the SFG process at
the output of the nonlinear crystal. It depends exponentially on an adiabatic parameter, defined
as α ≡ π|dΔk/dz|

4κ2 , i.e. the ratio between the sweep rate of the phase mismatch, dΔk/dz, and the
square of the coupling coefficient, κ2. Mathematically this represents the ratio between the left
hand side and the right hand side of Eq. 3, at the location where Δk = 0. Adiabatic propagation
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Fig. 1. Bloch sphere trajectories of SFG of three different intensities (a) (Media 1)
440MW/cm2 (b) (Media 2) 80MW/cm2 (c) (Media 3) 4MW/cm2. The south-pole repre-
sents the amplitude of the input frequency, and the north-pole represents the amplitude of
the converted frequency. (d) The projection of the trajectories onto the W axis yields the
conversion efficiency along the propagation. In these trajectories, phase matching condition
is fulfilled at z=1cm. The predicted output conversion efficiency for each trajectory, based
on Eq. 4, is also presented. (e) Continuous adiabatic variation of the phase mismatch pa-
rameter is required. This can be achieved by slowly changing the poling periodicity along
the propagation direction.

is obtained when α << 1, which is the case where the conversion efficiency reaches unity.
This can be achieved either by changing slowly the sweep rate at a given pump intensity, or by
applying strong pump for a given sweep rate.

In Fig. 1 we present three cases of the SFG dynamics when a linear sweep rate is applied.
When α << 1, full frequency conversion is achieved as shown in Fig. 1(a). When, the pump
intensity is not high enough or the sweep rate at a given crystal length and pump intensity
is not slow enough, then α∼1, and the conversion efficiency will drop, as seen in Fig. 1(b).
The case of α >> 1, is where the pump intensity is small, or the sweep rate is extremely high.
This corresponds to the weak coupling regime (the ”unamplified signal approximation”), which
results in low conversion efficiency, as shown in Fig. 1(c). These dynamical trajectories can be
projected on the W-axis of the sphere, bringing information regarding the conversion efficiency
along the propagation, as shown in Fig. 1(d). Also, their calculated Landau-Zener conversion
efficiencies are presented to the right of each projected trajectory. Due to the importance of Eq.
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Fig. 2. (a) The adiabatic sum frequency conversion apparatus. The detection stage was
designed to detect both the incoming ω1 beam, with the InGaAs detector, and the converted
ω3 beam, with the cooled CCD detection. (b) The monotonic relation between the growth
of the converted beam (measured by a cooled CCD spectrometer) with the decrease of the
incoming beam (measured by an InGaAs detector), when increasing the pump intensity.

4, we decided to present it in more practical parameters:

ηLZ (z → ∞) = 1− exp

⎛
⎜⎝−

25 ·32 ·10−3π2
(

χ(2)
)2

I2

n1n2n3λ1λ3c|dΔk/dz|

⎞
⎟⎠ . (5)

Here, c = 3 · 1010 cm/sec, λ1 and λ3 are measured in cm, I2 is measured in MW/cm2, χ(2) is
measured in pm/V and |dΔk/dz| is measured in cm−2.

3. Experimental setup and results

Although other implementations are possible, the simplicity and robustness of the quasi-phase
matching technique [19] in manipulating of the phase mismatch parameter, makes it the most
attractive in terms of experimental realization. The desired value of the phase-mismatch param-
eter is obtained by tuning the spatial structure of the domains using the approximate relation:
ΔkΛ (z) = 2π

Λ(z) , where Λ(z) is the local poling period.
By proper design of the periodicity of the poling, satisfying the adiabatic constraints posed

by Eq. 3, an effective phase mismatch function was obtained,

Δke f f (z) = k1 (z)+ k2 (z)− k3 (z)+ΔkΛ (z) = Δkproc (z)+ΔkΛ (z). (6)

Generally, for an aperiodic design it is reasonable to expand ΔkΛ (z) in a power series:

ΔkΛ (z) = Δk0 + ∂Δk
∂ z z + 1

2
∂ 2Δk
∂ z2 z2 + ... 1

N!
∂ NΔk
∂ zN zN . For simplicity we chose to design the adia-

batic aperiodically poled structure, with only two non-zero terms: the constant term, choosing
Δk0 = −Δkproc (z = L/2), and the linear term, ∂Δk

∂ z , chose to satisfy the adiabatic constraint
posed by inequality 3. It is important to note that this simple design is not generally optimal
in the sense of SFG bandwidth or temperature response. A more accurate solution for ΔkΛ (z),
should take into account the spectral dependence of Δkproc (z), due to dispersion, as well as the
spectral variation of the coupling constant. In practice, in the near-mid IR regime, these higher
order corrections are relatively small.

The particular design used in the experiments was tested by numerical simulations of the
propagation process using the finite difference method, where the periodicity was varied from
14.6 μm to 16.2 μm along a flux-grown KTiOPO4 crystal (Raicol Crystals Ltd.), with dimen-
sions of 20 x 2 x 1 mm. It was poled by low-temperature electric-field poling [20]. A plane wave
approximation, and a nonlinear susceptibility χ(2) = 32 pm

V were assumed. The experimental ap-
paratus is shown in Fig. 2(a). We used an optical parametric oscillator (Ekspla NT342) as our
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Fig. 3. Conversion efficiency as a function of input wavelength and the crystal length. (a)
Two dimensional numerical simulation of the conversion efficiency as a function of input
wavelength (y axis), and propagation distance. As seen, the shorter wavelengths are being
converted early along the crystal, and the longer wavelengths are being converted as the
crystal length is increased. (b) Experimental results of the spectral response in two different
crystal length, 17 mm and 20 mm.

laser sources for both a strong pump at 1064 nm (6 ns, 130 μJ), and a tunable signal varied
from 1400 nm to 1700 nm (5 ns, 1μJ). The pump and the signal, both polarized in the extra-
ordinary axis were spatially overlapped and focused collinearly into the crystal having waists
of 150μm and 120μm, respectively. These values guarantee that the Rayleigh range is larger
than the crystal length and thus the plane wave approximation of our simulations holds. The
crystal was held in a temperature-controlled mount. We collected both the input wavelength
(signal) and output SFG wavelength (idler) after their propagation in the crystal and recorded
them using an InGaAs photodiode, and a cooled CCD spectrometer, respectively.

Our demonstration consists of several sets of experiments. In each set, we varied a different
parameter of the process. Two of these sets were discussed briefly in Ref. [3], and here those are
mentioned for completeness. In all the experiments, the conversion efficiency was measured by
comparing the signal intensity with and without the presence of the pump beam. This was done
after verifying that the increase of the converted beam, A3, is correlated with the power loss of
the incoming beam, A1, as shown in Fig 2(b).

First, we measured the conversion efficiency as a function of the pump peak intensity for a
fixed signal wavelength 1530 nm. The results are presented in Fig. 2(b). A very good corre-
spondence was obtained with the numerical simulation, where the maximal efficiency which
was achieved with our maximal pump intensity was 74%±3% [3]. It is important to note that
unlike the case of a phase-matched crystal, where the conversion efficiency oscillates between
unity and zero upon increase in the pump intensity, the conversion efficiency would remain
nearly unity also for pump intensities exceeding 360MW/cm2.

In the second set of experiments, we measured the conversion efficiency as a function of the
input wavelength, at a moderate pump intensity of 60 MW/cm2. It was shown that an efficient
ultra-broadband conversion of over 140nm wide (1470nm to 1610nm) at room temperature was
obtained, except for a small region of low efficiency around 1485nm, which was associated
with a local fabrication defect, leading to violation of the adiabaticity condition at this wave-
length [3]. By performing these measurements for two different lengths, 17mm and 20mm, of
the same crystal, the robustness of our design to variations in the crystal length is also demon-
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Fig. 4. Conversion efficiency as a function of crystal temperature, using the adiabatic ape-
riodically poled KTP design at a pump intensity of 60MW/cm2. (a) Two dimensional nu-
merical simulation of the conversion efficiency as a function of crystal temperature (y-axis)
and input wavelength. (b) Conversion efficiency as a function of crystal temperature at con-
stant input wavelength of ω1 = 1550nm. A good correspondence between the experimental
results and the simulation of the design (vertical cross section of the two dimensional sim-
ulation) is shown.

strated. In contrast to frequency converter, where the use of thin crystals is required to achieve
maximal bandwidth, in the adiabatic design the achieved bandwidth is expected to grow as the
crystal length increases, while maintaining the same conversion efficiency. We show this both
numerically and experimentally in Fig. 3. As can be seen, the efficient conversion bandwidth is
increased almost linearly with the length of the crystals. This is in good agreement with the ex-
perimental results of Fig. 3(b), which show a 30nm wider bandwidth response as the increasing
of the crystal length in 3 mm. Two factors practically limit the achievable efficient conversion
bandwidth. The first is absorption in the nonlinear crystal itself. Another limiting factor arises
from the plane wave approximation which holds only if the crystal length is shorter than the
apparatus Rayleigh range. The latter is, in practice, limited by the available pump energy.

This broad response can also be maintained by varying the temperature of the nonlinear
crystal. This affects the conversion process both due to the temperature dependence of the crys-
tal’s refractive index, as well as through thermal expansion of the aperiodically poled structure.
This secondary, but crucial effect, causes the expansion of the domains while increasing the
temperature, effectively decreasing the phase mismatch parameter along the propagation. This
leads to a weaker temperature response than that determined by the adiabatic design. In stan-
dard frequency conversion, temperature has a dramatic effect on the conversion efficiency and
in fact, temperature tuning is commonly used to spectrally tune the narrow conversion band-
width. In contrast, for the adiabatic design, the conversion efficiency remains high even for
large variation in the crystal temperature. In Fig. 4(a) we present a numerical simulation of the
conversion efficiency as a function of the input wavelength and the temperature of the crystal. In
this plot, every vertical cross section represents the conversion efficiency as a function of crystal
temperature for a constant wavelength. The experimental results are shown in Fig. 4(b), were
the conversion efficiency at a constant wavelength of ω1 = 1550nm as function of the crystal
temperature is plotted. Highly efficient conversion is experimentally observed in a temperature
range of over 80oC. The simulation, which contains the effect of thermal expansion (taken from
Ref. [21]), predicts that this range exceeds, in fact, beyond the limit of our experiment. This is
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Fig. 5. Tunability of the broad bandwidth response. (a) Experimental results of tempera-
ture tunability, at pump intensity of 60MW/cm2 Conversion efficiency. This shows a good
agreement with the numerical simulations, presented in figure 4. (b) Numerical simulations
of pump wavelength tunability.

to be compared with an efficient range of 2oC in the case of SFG in a phase matched crystal,
obtained by periodic poling.

Another important parameter, which usually influences the phase mismatch is the incident
angle of the incoming frequencies with the nonlinear crystal. We checked, in simulations only,
the robustness of the adiabatic design, and found out that the acceptance angle of our design had
increased from less than 5 degrees in the periodically poled structure to more than 25 degrees,
for input wavelength of ω1 = 1550nm, and crystal length of L = 20mm.

Last, we would like to show that the adiabatic design is not only broad and robust, but that
it can, for a given crystal design, also be tuned in a broad range. This is done by two separate
mechanisms: temperature tuning and pump frequency tuning, enabling us to shift the efficient
conversion band to lower or higher input frequencies. In Fig. 5(a), we plot the measured conver-
sion efficiency as a function of input wavelength for two crystal temperatures: 50oC and 110oC.
As can be seen, the efficient conversion band is redshifted by ≈ 50nm, which is in good corre-
spondence with the numerical simulations shown,as horizontal cross sections, in Fig. 4(a). The
horizontal 1D cross-sections of the 2D numerical simulation would give the expected band-
width in each crystal temperature. The two experimental values are marked at the left of the
figure, and use the same color definition (blue for 50oC and red for 110oC). An even more
dramatic effect is presented in Fig. 5(b), where the effect of changing the pump wavelength is
simulated. In the figure we compare the response of our adiabatic design pumped at 1064nm
(as in the experiments) with the response to a pump wavelength of 1047 nm (pumping with
a Nd:YLF laser), and pump wavelength of 1159 nm, which can be readily obtained by raman
shifting the 1064nm excitation beam, in a Raman shifter.
In both tuning mechanisms, we see that as the efficient conversion band is tuned to lower wave-
lengths, the conversion efficiency slightly increases and the response becomes slightly narrower.
Tuning to the higher wavelength leads to the opposite behavior. The change in conversion effi-
ciency is a direct outcome from the fact that the coupling coefficient was changed (decreased or
increased, respectively), mainly through its dependence on the characteristics of the pump. This
effectively changes the adiabatic parameter, and thus the conversion efficiency. The narrowing
or broadening of the spectral response merely reflects the constant bandwidth in frequency.

4. Conclusion

In this paper we analyzed the robustness of the adiabatic sum frequency generation scheme. We
showed that it exhibits efficient conversion for wide range of frequencies and temperatures, up
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to two orders of magnitude larger than a standard phase matched nonlinear crystal. The results
show that a tradeoff between a broad bandwidth response and conversion efficiency is not al-
ways required, and can be limited to the cases of either a weak pump intensity, or fast changes
in phase-mismatch parameter. With an adiabatic design, nearly complete frequency conversion
can be achieved, without the necessity of perfect phase matching along the entire propagation.
We introduced an important analytical tool, the Landau-Zener conversion efficiency formula,
which could estimate the degree of the adiabatic propagation along the SFG process. The ro-
bustness of this design for other parameters was also discussed. Among them we explored its
robustness to pump intensity, crystal length and acceptance angle variations. We also demon-
strated the tunabilty of the broad spectral response via changes of crystal temperature and pump
wavelength. This tunability mechanism could have a great impact on the applicability of such
devices. While we have demonstrated the method here with a KTP crystal, it can be imple-
mented with any other nonlinear crystal whose second-order nonlinearity can be modulated at
high spatial resolution. As an example, in a 20 mm long LiNbO3 having the same chirp parame-
ter, and with the same interacting wavelengths, the spectral bandwidth is slightly narrower, 120
nm instead of 140 nm, but owing to the higher nonlinear coefficient in LiNbO3, lower pump
intensity of 310 MW/cm2 instead of 360 MW/cm2, would suffice for full conversion.

The adiabatic scheme can be utilized with some care to efficiently upconvert broadband
fluorescence signal as well as ultrashort pulses. The present scheme is also highly relevant to
spectroscopy of incoherent signals, such as is commonly utilized in astronomy, material science
and molecular spectroscopy. Due to the lack of quantum efficient detectors in the mid IR and
far IR optical regimes, optically up-converted weak signals into the near IR and visible regimes
is often used to facilitate quantum limited detection.

In conclusion, we believe that this scheme is important beyond the obvious practical appli-
cations. The complete analogy with two level physics and its geometrical visualization, which
is ubiquitous in other physical realms, could bring new physical insights into the process of fre-
quency conversion and will lead to better understanding of other nonlinear optical processes.
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