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Abstract Surface-plasmon-polariton waves are two-
dimensional electromagnetic surface waves that propagate
at the interface between a metal and a dielectric. These waves
exhibit unusual and attractive properties, such as high spa-
tial confinement and enhancement of the optical field, and
are widely used in a variety of applications, such as sensing
and subwavelength optics. The ability to precisely control the
spatial and spectral properties of the surface-plasmon wave
is required in order to support the growing interest in both
research and applications of plasmonic waves, and to bring it
to the next level. Here, we review the challenges and meth-
ods for shaping the wavefront and spectrum of plasmonic
waves. In particular, we present the recent advances in plas-
monic spatial and spectral shaping, which are based on the
realization of plasmonic holograms for the optical nearfield.

Surface-plasmon wavefront and spectral shaping
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1. Introduction

Surface-plasmon-polaritons (SPPs) are surface electromag-
netic waves that are coupled to electron waves, and prop-
agate at the surface between a dielectric and a metallic
medium [1]. These surface waves exhibit unusual proper-
ties, which are usually absent in the case of regular free-
space electromagnetic waves, owing to the confinement of
the wave to the surface and the enhancement of the opti-
cal field. They have been widely used for both fundamental
discoveries, such as extraordinary transmission [2], and ma-
nipulating Snell’s and Bragg’s fundamental laws [3,4], and
for nanoscale technologies, such as plasmonic circuitry [5],
focusing to subwavelength spots [6], sensing [7] and more.

The ability to control and guide plasmonic waves is a
crucial step for opening up new possibilities in nanopho-
tonics. Controlling the wavefront properties of surface-
plasmon waves, although challenging, is a key feature in
enabling a variety of applications. Specifically, in recent
years, significant efforts to control the wave properties of
plasmons have been performed in order to generate and
detect unique plasmonic beams. Among these are “self-
accelerating”, “diffraction-free” and self-similar plasmonic
beams [8–16]. Moreover, the challenging task of controlling
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the spectral properties of surface-plasmons can open ex-
citing opportunities for broadband coupling, sensing and
on-chip manipulation of ultrashort femtosecond pulses.

The pioneering realizations of spatial and spectral shap-
ing of surface-plasmons were mostly specified and relying
on ad hoc methods, as they were commonly aimed at a
specific application. However, these realizations acted as a
major driver for finding more generalized approaches for
controlling the plasmon wave properties.

In this manuscript, we will review the different methods
applied to surface-plasmon waves in order to perform spa-
tial and spectral shaping of plasmonic beams. Specifically,
we will focus on utilizing holographic methods for this pur-
pose. We will introduce the basic concepts of holography
and how they can be applied to plasmonic systems, and re-
view different nonholographic and holographic approaches,
taken by different researchers, in order to control the spa-
tial and spectral characteristics of plasmonic waves. As
will be thoroughly presented in the text, these holographic
methods are described by the interference between two
waves, a reference wave, which illuminates the hologram,
and an object wave, which reconstructs the desired wave-
front. As any of the two waves could either be a free-space
wave or a surface-plasmon wave, four groups of holograms
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Figure 1 (a) Light line of air (purple) and
dispersion relation of SPPs at a air/silver
(blue) and air/gold (orange) interface. It
can be seen that the wave-vector of the
SPP, is larger than the wave-vector of
the free-space wave, for any given fre-
quency. (b) Characteristic propagation
lengths for SPPs at air/silver and air/gold
interfaces, in the visible and NIR range.
(Ag and Au dielectric values taken from
Johnson and Christy, “Optical Constants
of the Noble Metals”, Phys. Rev. B 6,
4370–4379 (1972)).

could be identified – a free-space reference wave with a
free-space object wave, a free-space reference wave with
a plasmon object wave, a plasmon reference wave with a
free-space object wave, and a plasmon reference wave with
a plasmon object wave. Since our aim is to obtain a shaped
plasmonic wave that is propagating in the near-field, and
these are commonly excited with free-space light sources,
we will focus in this review on the second type, e.g. the
interference between a free-space reference wave with a
plasmon object wave.

It should also be noted that while here we concentrate on
shaping techniques of propagating surface-plasmon waves,
there is also a lot of activity on shaping optical beams using
localized surface-plasmons, or nanoantenna array-based
metasurfaces [17–20], which will not be reviewed here.

The structure of this paper is as follows: we start by
introducing the unique wave nature of surface-plasmons
and basic concepts in holography. We then present the evo-
lution of computer-generated holograms (CGH) and the
challenges in achieving holographic control of plasmonic
waves. This is followed by a comprehensive review of
the different efforts, both nonholographic and holographic,
conducted in order to control the plasmonic wave proper-
ties, which is followed by a comparison between these dif-
ferent methods through several examples together with their
limitation. A summary is provided with the closing remarks.

2. Wave properties of surface-plasmons

The challenges in achieving full control over the wave prop-
erties of surface-plasmons reside in their unique and dif-
ferent wave properties, compared to those of free-space
waves. These can be divided into the challenges relating to
the optical excitation of SPP waves, and to the challenges
in manipulating their wave properties.

The surface-plasmon-polariton (SPP) wave is a solution
of the electromagnetic wave equation for a geometry of an
interface between two semi-infinite layers, where one is a
metal and the other is a dielectric. Assuming time-harmonic
fields, the three-dimensional scalar Helmholtz equation is
∂2 E/∂x2 + ∂2 E/∂ y2 + ∂2 E/∂z2 + k2

0εd E = 0, where E is
the electric field in the dielectric region, k0 = 2π/λ0 is
the free-space wave-vector and εd is the dielectric per-

mittivity, z is the propagation coordinate and x, y are
the transverse coordinates, where y lies in the metal–
dielectric surface and x is perpendicular to it. We define
the metal/dielectric interface at the x = 0 plane. A wave
of the form E = A(y, z) exp(ikspz) exp(−kx x) solves this
Helmholtz equation, while maintaining the boundary con-
ditions at the metal/dielectric interface. Only a transverse
magnetic (TM) wave, for which the magnetic component
of the electromagnetic field is nonzero in the Y–Z inter-
face plane, satisfies the boundary conditions. A(y, z) is
the wave envelope, kSPP = k0

√
εmεd/(εm + εd) is the SPP

wave vector in the propagation direction, and εm is the per-
mittivity of the metal. This wave exponentially decays in
the x-axis in the dielectric region with a decay parameter

kx,d =
√

k2
sp − k2

0εd. In addition, the wave is also decaying

much faster in the metal region, with a decay parameter

kx,m =
√

k2
sp − k2

0εm.

By performing the derivatives in x and using the expres-
sion for kx , we can eliminate the x dependency from the
wave equation and obtain the two-dimensional Helmholtz
equation for the SPP envelope:

∂2 A/∂ y2 + ∂2 A/∂z2 + k2
sp A = 0, (1)

with y being the only transverse coordinate.
For this SPP solution kSP is complex, hence the wave

also decays exponentially in the propagation coordinatez.
This limits the propagation length of SPPs, which is de-
fined as the distance at which the intensity drops to 1/e
and is equal to 1/(2 × imag(ksp)). This inherent loss of the
SPP wave is fundamental and acts as a major inhibiter for
a variety of plasmonic applications. The absolute value of
ksp also determines the dispersion relation of SPPs. This so-
lution therefore encapsulates the basic properties of the SPP
solution – high spatial confinement to the metal/dielectric
interface and loss of the optical field with propagation. Fig-
ure 1 shows the dispersion relation and characteristic decay
lengths for SPPs at air/silver and air/gold interfaces. It can
be seen that the propagation length is less than 100 μm
in the visible, and is only a few hundred μm in the near-
infrared.

Similarly to free-space waves, plasmonic solutions of
the two-dimensional wave equation can be also studied
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Figure 2 (a) Configuration for grating coupling of SPPs. A metal
grating is illuminated at an angle and contributes momentum to
the incident beam. (b) The corresponding momentum conserva-
tion diagram for the case of (a). In the horizontal direction, this
diagram yields Eq. (3).

for the paraxial case, where the two-dimensional paraxial
Helmholtz equation is:

∂2 A/∂ y2 + 2iksp∂ A/∂z = 0. (2)

This implies that both paraxial and nonparaxial plas-
monic beams can be excited at the metal/dielectric bound-
ary.

The dispersion relation of the SPP also yields that for
any given frequency, the dispersion curve of SPPs lies to the
right of the light-line for a given metal/dielectric interface
[1], as seen in Fig. 1a. This means that the wave-vector of
the SPP, kSP, is larger than that of the wave-vector of the
free-space wave, k0. Therefore, in order to excite an SPP
wave from a free-space illuminating beam, an additional
contribution of momentum to the free-space beam is re-
quired. There are several methods to achieve this additional
momentum such as prism coupling, grating coupling, and
others [1]. Here, we shall focus on one specific method
that utilizes metallic periodic structures, namely diffraction
gratings.

A one-dimensional (1D) square grating with period�,
can contribute momentum via its grating wave-vectors,
kG = 2πm/�, where the diffraction order m is an integer.
Hence, when illuminated by a free-space beam the momen-
tum conservation equation in the coupling direction yields
(Fig. 2):

kSP = kin + kG, (3)

with kin = k0 sin θin.
We note that this scalar definition of the grating neglects

the effect of the ridge height on kG, which is often very
small, considering that typical heights are much smaller
than the wavelength.

In addition to the momentum compensation required to
excite SPPs, one must also take into consideration that due
to the limited propagation length of the SPP, the excited
plasmonic wave should be measured directly in the near-
field before it decays.

The above treatment applies for a monochromatic inci-
dent beam. For a spectral illumination of a broader nature,
one should also take into account other factors. During SPP
excitation by an incident free-space beam, spectral con-
stituents for which both energy and momentum are con-

served would efficiently couple to an SPP. Due to the grat-
ing’s finite size, the momentum contribution is not single-
valued, but rather a momentum distribution, centered about
kG. Consequently, if the grating is not trivially a square
grating in the propagation direction, it will affect the ef-
ficiency in which it couples certain wave numbers, when
illuminated by a broad spectrum incident beam, enabling
the possibility to spectrally shape the plasmonic excitation.

3. Holography of free-space waves

Holography is a general approach in wave phenomena,
which enables recording and reconstruction of the full am-
plitude and phase information of a certain target, or ob-
ject wave. This is achieved by recording the interference
pattern of this object wave with a reference wave. De-
noting the object and reference full waves (both ampli-
tude and waves) as Ao, Ar, the intensity interference pat-
tern is H = |Ao + Ar|2 = |Ao|2 + |Ar|2 + Ao A∗

r + A∗
o Ar.

Here, the first two terms of the right-hand side are propor-
tional to the intensities of the object and reference wave,
while the two last terms represent the interference of the
two waves. These interference terms contain the desired
amplitude and phase information of the object. This pat-
tern can be recorded for example on a light-sensitive film.
The wavefront can then be reconstructed by illuminating
the hologram with the same reference wave. In this case
we obtain H Ar = |Ao|2 Ar + |Ar|2 Ar + Ao|Ar|2 + A∗

o A2
r .

Here, the third term is the complex amplitude of the ob-
ject. It has to be separated from the other three terms, and
a method to achieve this is outlined below.

The original holography concept was proposed by Den-
nis Gabor in 1948 [21]. He was awarded the Nobel Prize
in physics for this invention in 1971. Gabor’s goal was to
improve the resolution of electron microscopes. Electron
holography is still widely used nowadays in electron mi-
croscopy to determine the phase variation of an electron
beam, induced by electric and magnetic potentials [22]. In
the early 1960s and following the invention of the laser,
which provided an efficient method to realize the required
reference wave with light waves, optical holograms became
widespread.

The next important milestone was the invention of the
computer-generated hologram by Brown and Lohman [23]
in 1966. The key point is that instead of interfering a ref-
erence wave and an object wave on a light-sensitive film,
it is possible to calculate directly the interference pattern
and print it on a transparent slide. The reconstruction of
the object wave is still performed in the same way of illu-
minating the hologram with a reference wave. This opens
up many new possibilities, for example it enables creation
of holograms of virtual objects that do not exist in reality,
or to create dynamic holograms using computer-controlled
spatial-light-modulators (SLM).

The holograms of Brown and Lohman [23] were binary
amplitude holograms, i.e. the normalized transmission in
each point of the hologram could take only two possible
values either 0 or 1. To encode both amplitude and phase,
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Figure 3 A Fourier hologram for far-
field reconstruction. To obtain a desired
beam shape in the far-field, in this case a
Hermite–Gauss (1,0) beam, a thin holo-
gram is encoded with the inverse Fourier
transform of the target beam. The field
emanating from the mask is then opti-
cally Fourier transformed by a lens, and
generates the desired field in the first
diffraction order. The different terms of
the off-axis hologram are spatially sep-
arated in the far-field. Reproduced with
permission [15].

they used the detour-phase method: The hologram is split
into many small cells. In each cell there is a transmitting
slit whose width determines the amplitude of the cell, and
its location within the cell determines the phase.

While the hologram presented above directly encodes
the wavefront, it is also possible to make a Fourier holo-
gram that encodes the Fourier transform of the wavefront. In
this case, the desired wavefront can be obtained by optical
Fourier transform with a lens. If this is an off-axis holo-
gram, in which there is a tilt angle between the object and
reference wave, the desired wavefront can be easily sep-
arated from the three unwanted terms, namely those that
are proportional to the intensities of the object and refer-
ence wave and the term that is proportional to the complex
conjugate of the object wavefront. In the off-axis Fourier
hologram, only the desired wavefront is obtained at the first
diffraction order. Figure 3 shows the apparatus of such an
off-axis Fourier hologram.

Three different schemes for binary modulation were
proposed by Lee in 1979 [24]. These methods are based on
converting the continuous interference term Ao A∗

r + c.c.
into a binary function. If one takes the sign of this term
we obtain the phase information of the wavefront, but the
amplitude information is lost. Lee suggested a clever way
to digitize the interference term of a Fourier hologram, so
that the amplitude modulation of the wavefront would also
appear in the first diffraction order. As an example, one
of Lee’s methods takes advantage of the fact that the first
order of the Fourier series of binary grating has an am-
plitude factor of sin(πq(x))/π . This can now be used to
determine the clipping level of the interference pattern. In
order to make a Fourier hologram, we first compute the in-
verse Fourier-transform of the desired wavefront, denoted
as Af (x) cos[ϕf(x)], where the normalized amplitude is be-
tween 0 and 1 and the phase between 0 and 2π . A binary
one-dimensional off-axis Fourier amplitude hologram is
therefore defined as:

t(x) = 0.5

{
1 + sign

[
cos

(
2π

�
x + φf (x)

)
− cos(πq(x))

]}
,

(4)

where q(x) = sin−1(Af(x))/π and � is the period of the
carrier frequency.

So far we have discussed holograms in which the ref-
erence waves and object waves are of the same type, e.g.
both of them are optical free-space waves. In the follow-
ing sections we will discuss plasmonic holograms, where
there is a fundamental difference – since one of the waves
is an optical wave, but the other one is a surface-plasmon-
polariton wave [25]. As will be detailed below, this opens
up interesting new possibilities, since it provides natural
separation between the reference wave and object wave,
and therefore enables reconstruction of the object directly
in the near-field.

4. Fundamental challenges
of surface-plasmon holography

As mentioned in Section 2, when trying to control the wave
properties of SPPs, one encounters several fundamental
challenges, owing to their unique wave nature. In order to
fully control the plasmon wave properties with holographic
methods, the following issues should be addressed:

First, and as previously discussed, coupling a SPP wave
from a free-space wave requires a compensation for the
missing momentum between the two wave-vectors. Sec-
ondly, in addition to the limited SPP propagation length
there is also the issue of the limited measurement range
of near-field characterization tools, such as near-field scan-
ning optical microscopes (NSOM), emphasizing the need
to both generate and detect the excited SPPs directly in
the near field, before they decay. Thirdly, while free-space
holograms are usually optically thin, thereby providing a
well-defined plane of the amplitude and phase patterns for
the illuminating free-space beam, SPPs are excited over a
finite propagation distance and therefore their amplitude
and phase cannot be simply defined at a specific one-
dimensional plane. Fourthly, as mentioned in the previ-
ous section, most commonly used holograms for free-space
waves generate additional wavefronts, or diffraction orders,
to that of the desired beam, which can be separated from
it in the far-field by a number of methods. For the case
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Figure 4 (a) Measurements of plas-
monic focusing and reflection/refraction
using dielectric features deposited on
a metal surface. (b) Plasmonic mir-
ror based on Bragg grating reflector.
(c) Measured (top) and simulated (bot-
tom) triangular plasmonic beam splitter
based on hole-array manipulation. Re-
produced with permission [26,29,30].

of SPPs this is a crucial problems since in the near-field
all these wavefronts or diffraction orders will interfere to-
gether. Finally, at present there are no dynamic tools for
controlling the wavefront of SPPs, like SLMs for the case
of free-space beams.

Using holography for shaping the spectrum of SPP ex-
citations can also come across difficulties, especially when
trying to achieve broadband control together with a high
excitation efficiency. A trade-off exists between the spec-
tral efficiency and the hologram bandwidth, e.g. increasing
the hologram’s length in the propagation dimension will
increase the coupling efficiency, however, it also reduces
the bandwidth. This will be discussed in more detail in
Section 8.

5. Nonholographic methods for spatial
and spectral shaping of surface-plasmons

Early investigations of the spatial coupling and propagation
characteristics of SPPs suggested that these can be shaped
or controlled to a certain degree. These studies were based
mainly on incorporation dielectric features on metal sur-
faces in order to create phase-retardation elements [26,27].
In this method the equivalents of some basic optical el-
ements were realized for plasmonic waves. For example,
by depositing a cylindrical dielectric on a metal substrate,
plasmonic lensing was demonstrated, and by depositing
a triangular-shaped dielectric plasmonic reflection, refrac-
tion, and total internal reflection have been demonstrated
[26] (Fig. 4a).

In a different approach, plasmonic planar Bragg grat-
ings were realized by the deposition of dielectric spheri-
cal scatterers on a substrate, followed by a metal deposi-
tion [27], or based on dielectric gratings on a metal sur-
face [28]. In this method, Bragg reflectors were realized to
fold the plasmonic beam similar to optical mirrors, together
with beam splitters and interferometers (Fig. 4b). Another

approach utilized the passive and even active manipulation
of two-dimensional metal hole arrays [29–31]. For example,
by spatially shaping the array, several plasmonic schemes
for focusing have been realized, together with triangular
beam splitting [29] (Fig. 4c).

A significant driver to the generation of more complex
plasmonic beams was the introduction and demonstration
of the optical Airy beam in free space [32, 33]. The Airy
beam is a unique solution of the paraxial Helmholtz equa-
tion (Eq. (2)), which exhibits unusual properties; it is a
“nondiffracting” beam – i.e. it preserve its spatial shape
with propagation. It is also a ”self-healing” beam – i.e. it
can reconstruct itself to its original shape after being dis-
torted by obstacles, and above all, it is a “self-accelerating”
beam – i.e. it propagates along curved trajectories. It was
suggested in 2010 that the unique properties of the Airy
beam would also be supported in a two-dimensional sys-
tem as a surface wave, e.g. the Airy plasmon [34, 35]. This
led to the first generation of a plasmonic Airy beam in 2011
by three different groups, and in three different methods.
Minovich et al. [8] relied on the realization of a kind of Airy
grating coupler, e.g. a special grating that closely imitates
the Airy-beam characteristics, and then improved using op-
timization methods in order to obtain the an Airy plasmon
beam. The relation between the Airy grating coupler and
the phase and amplitude of the Airy function, together with
the experimental apparatus, can be seen in Fig. 5a. Li et al.
[9] relied on the inplane diffraction method, which is based
on a coupled SPP that diffracts from an array of scatterers.
By controlling the spatial arrangement of these scatterers,
the phase front of the scattered SPP can be designed for
different applications [9, 12, 36, 37] (Fig. 5b). Using these
methods for the generation of a SPP with a spatial phase
front possessing a 3/2-power phase modulation lead to the
generation of an Airy-like plasmon [9]. Zhang et al. [10],
realized the Airy plasmon by generating a free-space Airy
beam, which was then coupled to an Airy plasmon using a
regular 1D metal grating (Fig. 5c).
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Figure 5 Three methods for generating plasmonic Airy beams. (a) An optimized grating coupler, build out of rows of square holes
milled in a gold layer, produces an Airy beam output. (b) An array of scatterers, obtained by the inplane diffraction method, forms a
plasmonic Airy beam. (c) A free-space Airy beam is coupled to an Airy plasmon beam using a regular periodic grating. Reproduced
with permission [8–10].

Figure 6 (a) Optical setup for dy-
namic control of SPPs. An SLM is
imaged on a subwavelength hole
array and the image is collected
by a camera. (b) Generation of
standing waves and focal spots
that can be dynamically controlled.
(c) Surface-plasmon caustic gen-
erated by the nanoantennas ar-
ray presented in the SEM image
in (d). Reproduced with permission
[38,57].

Another approach for dynamically controlling the spa-
tial properties of plasmonic waves is by the use of an SLM
[38,39]. In this method, the SLM is imaged onto a metallic
hole array, illuminating it partially, in order to excite SPP
only at those illuminated areas (Fig. 6). Exciting oppositely
propagating SPPs results in an interference pattern and in

this way standing waves and focal points can be realized
and even be used for microcopy [39]. The use of the SLM
enables dynamical control of these patterns and the location
of the focal points.

Along with the efforts to spatially control the ex-
cited plasmonic wavefront, applications of SPPs for
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Figure 7 Two applications for plasmonic spectral shaping: (Left) Implementation of the plasmonic demultiplexer, which separates an
incident SPP beam into two 180° separated spectral channels. (Right) Shaping the spectral Fano-like response of metastructures
having applications in refractive-index sensing. Reproduced with permission [40,58].

communication and for onchip circuitry also necessitate
the control over the excitation energy spectrum. One of the
first, and perhaps the most desirable spectral device is the
demultiplexer [40], seen in Fig. 7a, which allows for sorting
polychromatic light beams into separate SPP waveguides,
or beams. Succeeding efforts were made to launch unidi-
rectional, broadband SPPs using various methods such as
magnetic antennas [41] and deep-subwavelength slits in
substrate illumination [42]. These solutions had succeeded
in coupling a broadband SPP wave, however, they did not
provide sufficient degrees of freedom for completely con-
trolling the excitation spectrum. Experiments exhibiting
control of the plasmonic spectrum by shaping an ultrashort
pulse incident on a patterned tip have also been recently
reported [43]. This route seems to be promising as it might
enable dynamically changing the SPP excitation spectrum.

As mentioned earlier in the introduction, there has been
in recent years a growing interest in shaping optical beams
using localized surface-plasmons, or nanoantennas, which
are referred to as metasurfaces [17–20]. These are aimed
to shape the optical beam at the far-field, rather than the
near-field, and owing to this are beyond the scope of these
paper. However, a few demonstrations have also been made
in order to use these nanoantenas to shape propagating
surface plasmons in the near-field, due to their ability to
couple light to surface plasmons in a localized manner.
Such localized excitation techniques have been suggested
using a near-field probe [44] and electron-beam excitation
[45]. Another approach is to use subwavelength metallic
nanostructures that serve as scattering centers and couple
light to SPPs [46, 47]. The nanostructures have a spectra
response that can be tailored for a desired wavelength and
polarization by designing their geometry. At the relevant
wavelength a resonant response is obtained and the scatter-
ing is of high efficiency. In this term they can efficiently
convert far-field radiation to near-field currents, and vice
versa, and are known as optical nanoantennas [48]. A vari-
ety of schemes for coupling based on such metallic nanos-
tructures are available [49–53], including functional beam
shaping [54]. These methods demonstrate the advantages
of using nanostructures to manipulate light and SPPs with
relatively high efficiency, which ranges from about 1–3%
[55], compared to a previously estimated 0.35% for grat-

ings [56], and in a compact geometry. By spatially arranging
these nanoantenas on a metallic surface, the unique prop-
erties of localized surface-plasmon excitation have been
utilized to shape the excited surface-plasmon beam. The
nanoantennas were designed to excite propagating surface-
plasmons on the metallic surface and their spatial arrange-
ment on the surface is designed to launch the propagat-
ing surface-plasmon with a specified wavefront. Since the
spacing between the nanoantennas can be subwavelength,
the resulting plasmonic wavefront is relatively smooth and
uniform. In this manner, surface-plasmon curved caustics,
bottle beams and dual-focii lenses were demonstrated [57].
Figure 6 presents an example of a surface-plasmon caustic
(Fig. 6c) that was generated by an array of silver nanoan-
tennas spatially arranged on a silver surface in a manner
that manifests the phase required to generate the plasmon
caustic wavefront (Fig. 6d).

We note that significant progress has also been made in
tailoring the spectral response of localized SPPs [58], seen
for example in Fig. 7b.

The examples above provided significant steps towards
controlling the plasmonic wavefront and its spectrum, and
also implied that a more general approach in order to fully
control the plasmonic wave properties would be highly ben-
eficial. One such approach, which is discussed in the next
section, is the use of holographic methods.

6. Holographic methods for spatial and
spectral shaping of surface-plasmons

The concept of holography has also been extended to plas-
monic waves. For example, interference between a plas-
monic reference and a plasmonic object beam was sug-
gested, in order to define lines that can then be etched in
the metal surface. This forms a plasmonic hologram that
can convert the reference wave into a desired reconstructed
wave [59, 60] (Fig. 8a). This elegant method assumes that
the plasmonic reference wave is already present, and does
not address the coupling issue of the interacting plasmons.
This approach, which is in principle independent of the
coupling process, would be of great advantage for compact
photonic integration.
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Figure 8 Holographic methods implemented with SPPs. (a) a read-and-write process with both the object and reference beams are
plasmonic beams. (b) A read-and-write process with a reference plasmonic beam and a free-space object beam. (c) Similar approach
as in (b) but by using CGH rather than a read/write process. Reproduced with permission [60,62,67].

In another scheme, interference between a reference
plasmonic beam and an object free-space beam was used
to reconstruct a desired free-space beam wavefront at the
far-field. The latter was excited by a plasmonic beam which
diffracted from the hologram [25, 61–65] (Fig. 8b). A sim-
ilar approach, where a plasmonic reference beam was used
to generate an object free-space beam, was applied using
CGH. This approach eliminates the need for interfering
both beams in order to obtain the hologram’s pattern. This
involves the use of two plasmonic gratings, the first cou-
ples a free-space beam into a plasmonic beam, which then
propagates to the plasmonic CGH, which in turn couples the
plasmonic beam back to free-space with the required ampli-
tude and phase. This method was previously used to couple
plasmonic beams with free-space Airy and Laguerre–Gauss
vortex beams [66]. In the reversed approach, free-space
vortex beams, carrying a certain angular orbital momen-
tum, corresponding to a certain topological charge, were
shined on a plasmonic hologram also possessing a different
topological charge [67] (Fig. 8c). This resulted in a change
of the total topological charge of the generated plasmonic
beam, which affects its spatial shape. From the latter, one
could detect the original orbital angular momentum carried
by the free-space beam.

These methods were designed to control or detect the
free-space wavefront, generated in the far-field, using
the surface-plasmon beam attributes that were located in
the near-field. In the next section we will discuss the in-
troduction of another class of plasmonic holograms, which
are specifically designed for controlling the near-field wave-
front of surface-plasmon waves.

6.1. The binary near-field hologram

In order to obtain holographic control over the amplitude
and phase of the plasmonic wavefront directly in the near-
field, we can similarly define the plasmonic hologram as
an interference between two beams. However, this time the
reference wave will be defined as the free-space beam and
the object wave will be defined as the plasmonic beam.

Following this approach and similarly to the Fourier holo-
gram described in Section 3, the desired plasmonic beam
will be generated in the first far-field diffraction order of
the plasmonic beam, e.g. one needs to propagate the plas-
monic beam to its “far-field” in order to obtain the de-
sired beam’s shape. Unfortunately, such propagation to the
Fraunhofer region without using Fourier-transforming plas-
monic lenses (Fig. 4a) is impractical due to the limited prop-
agation lengths of SPPs. Moreover, several additional plas-
monic beams will be generated at all the other diffraction
orders of the hologram, making this approach inefficient.

A robust approach to overcome this issue resides in a
different class of holograms, which are designed specif-
ically for the near-field [15]. In this near-field hologram
(NFH), the free-space beam acts as the reference beam,
while the plasmonic object beam is obtained directly in
the near-field, rather than the far-field. This is feasible due
to the fact that there is a Fourier transform (FT) relation
between the near-field and the far-field. In Section 3 we
discussed the principle of Lee’s binary encoding method,
in which the inverse FT of an object beam was encoded
into the hologram in order to obtain it in the first diffraction
order in the far-field. This means that there is also a FT re-
lation between the field emanating from the hologram, e.g.
the near-field, and the field obtained in the first diffraction
order in the far-field. Thus, if one should desire to obtain the
object field in the near-field, one can actually encode into
the hologram the object field itself, rather than its inverse
FT, as was done in Section 3. The latter is what makes the
NFH so useful for plasmonic waves – it enables us to obtain
the object plasmon wave directly in the near-field, right at
the vicinity of the hologram, where it can be detected before
decaying.

In the scheme of the plasmonic NFH, the NFH itself lies
in the plane of propagation, unlike that of the Fourier holo-
gram, and is perpendicular to the direction of the free-space
beam illumination, as shown in Fig. 9. The plasmonic ob-
ject field, namely its amplitude and phase A(z, y), φ(z, y),
are encoded along the transverse coordinate ywith a modu-
lated spatial carrier frequency of 2π/� in the zcoordinate,
which is the propagation direction, where � is the period of
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Figure 9 The scheme for a plasmonic
near-field hologram. The hologram lying
in the (z, y )-plane, is encoded with the
direct amplitude and phase of the de-
sired beam. The hologram is then illumi-
nated by a free-space beam, and its first
diffraction order couples into a SPP. The
generated plasmonic field by the holo-
gram in the near-field is the desired field,
while the other terms of the hologram are
being diffracted back to free space. Re-
produced with permission [15].

modulation. This modulation acts as a grating in the prop-
agation direction. Therefore, by choosing the appropriate
period�, one can use this grating to contribute the missing
momentum between the SPP and free-space wave-vectors,
as discussed in Section 2, thus coupling it to the interface. In
this way, one inherently gains the separation of the desired
first diffraction order of the hologram from all the others,
namely, only it will couple to an SPP since only it con-
serve the required momentum. Specifically, for zero-angle
illumination, as illustrated in Fig. 9, the +1 and –1 orders
of the hologram will propagate in opposite directions from
the hologram along the interface. Moreover, for a nonzero
angle, all diffraction orders except the coupled +1 order
will diffract back to free-space. This is a major advantage
of the plasmonic NFH compared to the Fourier hologram,
since as mentioned before, when using a Fourier hologram
the different diffraction orders cannot be separated in the
near-field.

Owing to the binary nature of metallic gratings used to
couple SPPs to the metal/dielectric interface [1], we can
use a modification of Lee’s binary encoding method that
was introduced in Section 3, in order to obtain the two-
dimensional plasmonic NFH using the following equation
[15]:

t(z, y) = h0

2

{
1 + sign

[
cos

(
2π

�
z + φ(y)

)
− cos(πq(y))

]}
,

(5)

where q = sin−1[A(y)]/π and contains the amplitude in-
formation, �is the period of modulation and h0 is the holo-
gram’s height. Equation (5) encapsulates all the required at-
tributes of the plasmonic hologram: an arbitrary plasmonic
field, A(z, y), φ(z, y), can be encoded, a carrier frequency
completes the missing momentum, thus coupling only the
first-order SPP from free-space beam to the interface, and
the desired beam is generated directly in the near-field.
One can also see from Eq. (5) that the modulation is en-
coded in the direction of propagationz, while the amplitude

and phase of the desired beam is encoded in the transverse
directiony. Another difference from Lee’s original code
(Eq. (4)) is that rather than using the Fourier transform of
the desired wavefront to form a Fourier hologram, here the
wavefront is encoded directly, as discussed above. This ap-
proach can now be readily used to generate any desired
plasmonic beam for a variety of applications.

6.2. Case study – high-order Hermite–Gauss
plasmon modes

In order to provide more intuition to the reader on how and
why this plasmonic NFH works, we present here a step-
by-step example, for the use of a plasmonic NFH in order
to generate a Hermite–Gauss (HG) plasmonic beam, which
is one of the most basic beams used in optics. HG modes
are solutions of the paraxial Helmholtz equation (Eq. (2)),
and exhibit the self-similarity property, meaning that they
diffract with propagation but maintain the same scaled
beam profile. Owing to the dimensionality of plasmons,
the plasmonic HG beam is one-dimensional, and described
by the general one-dimensional, high-order HG mode
formula:

um,0(y) = Am

w0
Hm

(√
2y

w0

)
exp

(
− y2

w2
0

)
(6)

where w0 is the beam radius and Hm are the Hermite
polynomials.

For our case study we choose to generate the HG(1,0)
mode, and as a first step we isolate its amplitude and phase
from Eq. (6). Figure 10 shows the normalized absolute
amplitude and phase of the HG(1,0) mode. We can now
insert the obtained amplitude and phase to Eq. (5) in order
to obtained the spatial distribution of the plasmonic NFH
for the HG(1,0) mode. A SEM image of this NFH fabri-
cated from silver metal is shown in Fig. 10b. Examining
the relation between the object HG(1,0) field presented in
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Figure 10 (a) Normalized absolute amplitude and phase of the
HG(1,0) mode, and SEM image of the corresponding plasmonic
NFH (b).

Fig. 10a and its resulting NFH in Fig. 10b, reveals the na-
ture in which the information is encoded into the NFH. It
can be seen that in the propagating directionzthe pattern
repeats itself with period�, corresponding to our choice
of modulation period, and this creates a grating structure.
We can observe that the peaks presented in the amplitude
of the HG(1,0) mode correspond to a duty cycle (DC) of
50% in the NFH (black arrow), which correspond to the
highest coupling efficiency of the NFH. Furthermore, we
can see that the decrease in amplitude towards the edges

of the HG(1,0) mode correspond to a decrease in the DC
towards the edges of the NFH (black arrow). It is now clear
that the DC of the NFH is a manifestation of how the am-
plitude of the object beam is encoded into the NFH. We
can also observe that the left part of the NFH is shifted
relative to the right part by exactly half of the modulation
period. This shift exactly corresponds to the πphase shift
seen in the relative phases between the left and right lobes
HG(1,0) mode. This spatial shift in the NFH is a manifes-
tation of how the phase of the object beam is encoded into
the NFH.

The last step remaining is to see what will be the plas-
monic field that will be generated by this NFH. Measure-
ments of the plasmonic field intensity for two different HG
mode, HG(1,0) and HG(3,0) plasmonic beams, are shown in
Fig. 11, together with SEM images of the plasmonic NFHs
that were used to generate them. The inset shows a com-
parison between the theoretical and measured beam profile
for both beams, and these differences will be discussed in
detail later.

Although the HG example presents both amplitude and
phase encoding of the object field, it is sometimes desir-
able to realize phase-only elements. In this case, there is
no need to encode the amplitude and the cos(πq(y)) term
in Eq. (5) can be omitted. As an example of a plasmonic
phase-only NFH we present the generation of a plasmon
caustic. A caustic is a curved light beam that is constructed
from many geometrical rays that are tangent to the tra-
jectory of curvature. There is a specific relation between
the curvature of the beam and its initial phase, therefore,
in order to generate a caustic one need to realize its rele-
vant phase profile. Both paraxial and nonparaxial arbitrary
trajectory caustics have been realized in free-space using
this method [68, 69]. This means that in order to generate
a plasmon caustic one needs to realize this relevant phase
in the near-field, and this can be done with a phase-only

Figure 11 NSOM experimental
measurement of plasmonic (a)
HG(1,0) and (c) HG(3,0) beams.
The insets show the cross section
of the simulated (blue curve) and
measured (red curve) intensities.
SEM images of the plasmonic holo-
grams which generated the HG(1,0)
and HG(3,0) beams, are shown in
(b) and (d), respectively. Repro-
duced with permission [15].
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Figure 12 (a) Geometrical representation of the construction of a caustic SPP. Geometrical rays (white dashed lines) emanating from
the two-dimensional plasmonic binary phase mask (SEM image) which generated the caustic SPP (NSOM measurement). The mask
and the measured SPP are for the case of an exponential trajectory (solid purple line shows the analytical curve). (b) Experimental
demonstrations of plasmonic SAB with three different polynomial trajectories. Reproduced with permission [13].

NFH. Figure 12 shows the realization of several plasmon
caustics by a plasmonic phase-only NFH. Figure 12a offers
a graphical representation of the construction of the caustic
SPP, for the case of an exponential trajectory, and it can be
seen that the plasmonic NFH generates geometrical rays at
different angles that are tangential to the constructed ex-
ponential caustic SPP curve. It is therefore understood that
the curvature along the direction yof the NFH is a manifes-
tation of the required caustic phase. Similarly, additional
arbitrary caustic trajectories can be realized by implement-
ing different phase-only NFHs [13] and Fig. 12b presents
three examples of different polynomial trajectories.

6.3. Simulating the propagation of plasmonic
waves using Green’s function

It would be highly beneficial to simulate the target object
beam and the holographically generated plasmonic waves
before the hologram fabrication is performed. Due to the
nature of the hologram being a 3D structure, it is customary
to use three-dimensional FDTD or FEM software in order
to simulate the plasmonic field that will be generated by the
mask. These are usually quite expensive, complex to use,

and require a long running time owing to the 3D nature of
the simulation. For a comprehensive review of numerical
methods to simulate nanophotonic devices, see [70]. We
note that for beam-propagation applications, as required in
the case of plasmonic beam shaping, we are only inter-
ested in the 2D scalar propagation attributes of the plas-
monic field, as we know that the behavior perpendicular
to the interface will exhibit an exponential decay into both
metal/dielectric materials. Therefore, it will be beneficial
to find a simpler two-dimensional approach.

Since SPPs are TM solutions of Helmholtz’s equa-
tion, their propagation dynamics at the plasmonic
metal/dielectric interface can be described by the 2D scalar
Helmholtz equation, Eq. (2). Here, we assume that all SPPs
that have been successfully excited at the interface are TM,
and from here the scalar treatment can hold. Therefore,
we can now treat the propagation dynamics as being gov-
erned by the 2D Green’s function of the 2D Helmholtz
equation, which is G2D = − i

4 H (2)
0 (kr ), where H (2)

0 (kr )
is the Hankel function. The physical meaning of this
treatment is that a 1D wavefront can now be treated as
a collection of point sources, emitting 2D circular waves,
similarly to the Huygens–Fresnel principal in 3D. The field
at any given point g(y, z) is a convolution of the sources
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Figure 13 (a) Theoretical normalized amplitude and phase of a cosine-Gauss beam. (b) The theoretical cosine-Gauss beam obtained
by propagating the field in (a). (c) The generated cosine-Gauss beam, obtained by propagating the field emanating from the plasmonic
hologram, shown in the first 5 μm of the figure. The difference between (b) and (c) can be clearly seen and are due to the diffraction
from the finite features of the hologram.

distribution f (y, z) with the appropriate Green‘s function,
G(y − y′, z − z′):

g(y, z) =
∫ ∫

f (y′, z′)G(y − y′, z − z′)dy′dz′. (7)

To simulate the propagation of a desired arbitrary plas-
monic beam, one has only to insert into this calculation the
known 1D phase and amplitude profile, at the starting line
z = 0, and perform the overall contribution of all these point
sources over the 2D propagation space (Fig. 13). Moreover,
since the treatment is that of a collection of point sources,
this approach is not limited to a 1D profile, but also holds
for 2D point-source distributions. This fact enables us to
predict the output of the plasmonic holograms in a very pre-
cise way. The hologram itself can be divided into discrete
sources, and therefore treated as a collection of 2D points
sources. In a similar way, the contribution from all these
sources can now be calculated over the entire 2D propa-
gation space. This calculation can easily be implemented
and Fig. 13 shows how this simple approach can be used to
predict the output of plasmonic holograms very accurately.
In addition, this method can also be used to simulate a non-
normal incident illumination beam by adding a phase to the
sources.

6.4. Fabrication of binary near-field holograms

The fabrication of the plasmonic near-field holograms is
based on standard nanofabrication processes. A substrate is
first coated with a thick metal layer, usually silver, of around
200 nm thickness. It is then spin coated with an electron-
beam resist layer, such as PMMA [polymethyl methacry-
late], which is followed by standard electron-beam lithog-
raphy of the hologram’s pattern onto the PMMA. After the
chemical development of the PMMA resist, another metal
layer is deposited on top of the PMMA pattern, with a
thickness depending on the metal and wavelength of opera-
tion, for silver and 1064 nm, this thickness is 40 nm. Then, a

Figure 14 Illustration of the fabrication steps required for the
realization of near-field plasmonic holograms.

lift-off process is performed to remove the undesired metal
regions and the PMMA (see Fig. 14 for the fabrication
steps). The plasmonic near-field holograms, presented in
the next chapter, were designed for free-space illumination
at normal incidence, at which the surface-plasmon wave-
length is equal to the period of the spatial carrier frequency.
In general, these can be designed to be illuminated by any
desired angle, by changing the modulation period to satisfy
the wave-vector equation, as illustrated in Fig. 2.

7. Comparison between the different
methods of SPP spatial shaping

So far we have discussed different approaches and meth-
ods for controlling the plasmon wavefront, being either
holographic or nonholographic. It would be beneficial to
perform a comparison between these different approaches
in order to gain more insight into the advantages and dis-
advantages of each method. For that purpose, in this sec-
tion we will review the experimental results, obtained by
different methods, for the generation of several common
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Figure 15 (a) Measured (top) and simulated (bottom) Airy plasmon using the method of Zhang et al. [10]. (b) Measured (top right)
and simulated (bottom right) Airy plasmon using the method of Li et al. [9] together with the scattering array (left). (c) Measured Airy
plasmon using the method of Minovich et al. [8] together with the Airy grating coupler. (d) Measured (top right) and simulated (top
left) Airy plasmon using the plasmonic NFH method of Epstein and Arie [15] together with s SEM image for the NFH itself (bottom).
Reproduced with permission [8–10, 15].

plasmonic beams. Specifically, we will discuss the cases of
the plasmonic Airy, cosine-Gauss and Bessel beams.

7.1. Plasmonic Airy beam

We start by examining the different methods for generat-
ing a plasmonic Airy beam. As mentioned in Section 5,
three nonholographic methods have been previously used
to generate the Airy plasmon, together with a holographic
generation of the Airy plasmon, based on the plasmonic
NFH [15]. Figure 15 presents the results, and the structures
used in each method, for the Airy plasmon generation.

The free-space Airy beam realization of Zhang et al.
[10] (Fig. 15a) followed by its coupling to an SPP Airy
plasmon by a grating, allows for dynamic control of the
trajectory of the generated Airy plasmon. This is achieved
by dynamically changing the phase of the free-space beam
using a SLM, which in turn affects the trajectory of the cou-

pled Airy plasmon. This approach, however, can work well
only for paraxial beams, such as the Airy beam, as this kind
of linear coupling relation, between the free-space beam
and the plasmonic beam, can only hold under the parax-
ial approximation [71]. For generation of more complex
and nonparaxial beams, this coupling approach requires a
more careful structuring of the properties of the illuminat-
ing free-space beam in order to obtain greater control on
the generated plasmon [71].

The inplane diffraction method, introduced by Li et al.
[9] allows for a greater amount of control on the phase of the
generated SPP, the ability to handle a broader spectral SPPs
excitation [35], and is not limited by the above-mentioned
coupling condition. This fact makes it more versatile for a
variety of applications. However, owing to its use of scat-
terers, it is less efficient, especially when considering that
the coupled SPP first propagates along the scattering ar-
ray, and forms the generated SPP only when scattered from
the array itself, symmetrically on both sides of the array.
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Figure 16 (a) and (d) numerical simulations, (b) and (e) NSOM measurements, and (c) and (f) their cross section at z = 10 μm
(simulated – blue curve, measured – red curve), of HG(1,0) and HG(3,0) plasmonic beams, respectively. Reproduced with permission
[15].

Due to the propagation losses of SPPs this also decreases
the propagation distance of the generated plasmonic beam.
The generation of the Airy plasmon based on the inplane
diffraction can be seen in Fig. 15b. Since the inplane diffrac-
tion method is a phase-only method, one should note that
the generated beam is Airy-like and not the analytical Airy
plasmon solution, as it is based on the generation of a
3/2-power phase modulation in the Fourier plane and not
the analytical Airy solution composed of both phase and
amplitude modulation.

The latter issue has been addressed by the Airy grat-
ing coupler demonstrated by Minovitch et al. [8], shown
in Fig. 15c. Examining a single line of the Airy grating
reveals its incorporation of the Airy amplitude modulation.
As the Airy beam’s amplitude is composed of gradually
decreasing spatial lobes (Fig. 5a), the line is composed of
gradually decreasing spatial rectangular slits, which only
couple free-space light to SPP where the slit exists. Since
the Airy beam’s phase is composed of alternating π phase
shift between adjacent lobes the second line of the grating
generates the complementary amplitude modulation of the
first line, but spatially shifted by half the wavelength of the
SPP. These two lines then repeat themselves periodically to
form the complete Airy grating. The resulting Airy plasmon
can be seen in Fig. 15c as well, and although this approach
incorporates amplitude and phase modulations, it still does
not provide the generation of the analytical Airy beam solu-
tion. This is due to the fact that the exact Airy beam lobes’
intensity gradually decrease in intensity as well and have a
smooth round shape. These are not addressed by the use of
square slits in different sizes, and additional optimizations
are required in order to generate the resulting beam.

In [15], an Airy plasmon solution with the analytical
amplitude and phase dependence was generated by a real-
ization of a binary plasmonic NFH, according to the an-
alytic Airy function. Measurements of the generated Airy
plasmon and a SEM image of the Airy plasmon NFH are
shown in Fig. 15d. It can be seen that this NFH has some re-
semblance to the Airy grating obtained by Minovich et al.
[8], however, here the slits are replaced by holographic
lobes, allowing for generation of the desired amplitude and
phase distribution. In this approach no optimizations are
required and both amplitude and phase modulations are en-
coded within the NFH, however, limiting factors exist for
this approach as well. The first relates to the resolution in
fabrication of the plasmonic holograms, e.g. the smallest
feature that can be fabricated. These are limited by the fab-
rication process, materials, resist thickness and the electron-
beam lithography. The effect of this limitation can be seen
in the lobe widths of the generated plasmonic HG beams in
Fig. 16. It can be seen that the measured width of the lobes
are narrower than those of the simulated beam. This differ-
ence resides in the fabrication resolution, which its affect
can be is seen in HG(1,0) NFH presented in Fig. 10b. The
structural edges of the lobes of the fabricated plasmonic
hologram narrow rapidly with many discontinuities, thus
affecting the generated HG plasmon.

The second factor resides in the total length of the
plasmonic hologram, e.g. the number of periodic cycles
within the hologram. As mentioned in Section 5, SPPs
are excited over a finite propagation distance. However,
for an ideal hologram the field emanating from it should
be well defined in a one-dimensional plane along the
y-axis, namelyA(y), φ(y). Since free-space holograms are
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Figure 17 Expected and resulting am-
plitude (red and blue curves, respec-
tively) and accumulated phase (black
and purple dashed curves, respectively)
emanating from (a) single-cycle mask
and (c) nine-cycles mask, for a parabolic
curve. Plasmonic beam intensity ema-
nating from (b) single-cycle, and (d) nine-
cycles masks. Reproduced with permis-
sion [13].

usually optically thin, this is easily obtained by a planar
hologram or SLM. In the case of the plasmons, the finite
nature of the hologram along thez-axis will affect the gener-
ated plasmonic beam. In principle, a single-cycle NFH can
be realized, however, its coupling efficiency will be very
low owing to the broader spatial frequencies in its Fourier
plane. To show this affect, Fig. 17 presents simulations of
the resulting amplitude and accumulated phase generated
by a single-cycle phase hologram, and a nine-cycle phase
hologram. Adding additional cycles results in two differ-
ent effects – while the coupling efficiency is increased, the
resulting amplitude and phase diverge from their target val-
ues. It is seen that the amplitude is not constant, as expected
from a phase-only hologram, and the accumulated phase
increases for larger y values. These changes lead to a de-
viation from the target trajectory and intensity distribution
of the beam (Fig. 17). Our study shows that the optimum
number of cycles for the holograms we designed is of about
five periods.

The third factor relates to the encoding scheme of the
hologram and may be encountered when high spatial fre-
quencies are encoded. Equation (5) assumes a lack of
dependency between the transverse and propagation co-
ordinates. However, when highly nonparaxial beams are
encoded, this assumption may no longer hold, resulting in
a distortion of the beam’s wavefront. Furthermore, encod-
ing of high spatial frequencies is accompanied by a smaller
geometrical features in the plasmonic hologram, which in
turn, relates to the fabrication resolution. It is also notice-
able that this approach does not easily allow to change dy-
namically the properties of the launched plasmonic beam,
as demonstrated in [10,71] since once fabricated, the NFH
cannot be changed.

We note here that since the NFH in principle is not
limited by any paraxial considerations, nonparaxial self-

accelerating beams, such as the half-Bessel, Mathieu and
Weber beams [72,73] can also be realized. These are exact
solutions of the nonparaxial Helmholtz equation (Eq. (3)),
and therefore enable one to achieve higher rates of accel-
eration, compared to the paraxial Airy beam. The realiza-
tion of such nonparaxial SPP beams based on plasmonic
NFH have also been demonstrated [14], and the compar-
ison between a paraxial Airy plasmon and a nonparaxial
Weber plasmon, having the same trajectory, is presented in
Fig. 18.

7.2. Plasmonic cosine-Gauss beam

The cosine-Gauss beam is another kind of “nondiffract-
ing” beam, which propagate along a straight trajectory. It
is the two-dimensional equivalent of the three-dimensional
Bessel beam, and it is characterized by a transverse infinite
cosine field amplitude profile, multiplied by a Gaussian en-
velope in order to truncate it [74]. It can be mathematically
described as the inference between two plane waves, hav-
ing the same relative angle with respect to the optical axis
(Fig. 19a (top)). It has been generated as a nondiffracting
plasmonic beam by three different groups by three differ-
ent methods; one based on a nonholographic method [11],
one based on a holographic far-field method [75] and one
based on the plasmonic NFH [15]. Its first demonstration
by Lin et al. [11] was based on the realization of two slanted
metallic grating, in order to launch the two relative angled
plane waves, and it was illuminated with a Gaussian beam
that acted as the Gaussian envelope. Both measured beam
and the structure can be seen in Fig. 19a.

Similarly to the approach used in [10], Xiao et al. [75]
used an SLM for generating the cosine-Gauss beam in
free-space using a SLM, which then illuminated a metallic
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Figure 18 Comparison between mea-
sured and simulated Airy and Weber
beams. Numerical simulations (a) and
(c) and NSOM measurements (b) and (d)
of the intensity distribution of the Weber
beam and its equivalent Airy beam. The
dashed white line represents the analyt-
ical trajectory of the beam. Reproduced
with permission [14].

grating in order to couple it to a SPP (Fig. 19c). In [15], a
plasmonic NFH was encoded with the amplitude and phase
of the cosine-Gauss beam, resulting in the hologram pre-
sented in Fig. 19b (bottom). The similarity between the
NFH obtained from the optical field properties in Fig. 19b
and the structure based on the two slanted gratings in Fig.
19a can be clearly seen, together with the generated beams.
The main difference between the two is that by using the
slanted gratings the amplitude envelope of the beam re-
sides in the illuminating beam, while in the case of the
NFH all the information is contained within the hologram
and the illuminating beam can be a simple plane wave. Us-
ing the illuminating beam in order to define the envelope of
the plasmonic beam can be advantageous for dynamically
controlling the properties of the launched plasmonic beam,
while the NFH can be used for the generation of more com-
plex plasmonic beams. For example, the cosine-Gauss beam
can actually be manipulated is such a manner that will allow
to compensate for plasmonic losses [76]. This is achieved
by manipulating the transverse amplitude of the two plane
waves in a manner that allows for giving more energy to
the side lobes of the resulting beam. In this way the central
lobes of the plasmonic cosine-Gauss beams can maintain a
fixed intensity and even a growing intensity, in spite of the
plasmonic losses. These kinds of beams require the precise
control over the amplitude profile of the beam and this can
be provided by the plasmonic NFH. Figure 20 shows the
experimental realizations of the regular, fixed intensity and
linearly growing plasmonic cosine-Gauss beam.

7.3. Plasmonic 1D Bessel beam

Both the Airy and cosine-Gauss plasmonic beams, previ-
ously discussed, are exact solutions of the 2D Helmholtz

equation, thus making their generation mostly an exper-
imental challenge. However, the Bessel beam is not a
solution of the 2D Helmholtz equation, but of the 3D
Helmholtz equation, thus making its generation highly
challenging both conceptually and experimentally. In 2011
it was suggested that a 1D Bessel plasmon can actually
be realized in a unique structure composed of multiple
metal/dielectric layers [77, 78].

A close similarity exists between the cosine-Gauss
beam and the 1D Bessel beam [79], which lead to the gen-
eration of a 1D Bessel-like plasmon, based on the same
methods for generating the cosine-Gauss plasmon [79,80].
The generation of several Bessel-like plasmonic beams,
and the difference between the measured 1D Bessel-like,
the calculated 1D Bessel-like, the exact 1D Bessel and the
cosine-Gauss beam profiles can be seen in Figs. 21a and
b. In 2013, using only a single ridge as the slanted grating,
and controlling the relative phases between them, both J0(y)
1D Bessel-like, and its higher-order J1(y) Bessel-like beam
have also been realized [80] (Fig. 21c). In order to generate
the exact 1D Bessel plasmon the holographic approach of
the plasmonic NFH has been utilized in 2015 [76], and the
measurement of the resulting intensity distribution of the
1D Bessel plasmon can be seen in Fig. 21d.

8. Holographic spectral shaping
of surface-plasmons

Apart from fully controlling the plasmonic wavefront, the
binary plasmonic NFH can also be utilized for tailoring the
energy spectrum of the SPP excitation. In a similar fash-
ion to Section 6.1, the grating manifests an interference
between a free-space broadband incident wave as a refer-
ence and a spectrally (i.e. temporally) shaped SPP wave as
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Figure 19 (a) Concept for generating the cosine-Gauss beam according to [11] (top left), the two slanted gratings structure (top
right), and the generated beam (bottom). (b) SEM image of the plasmonic NFH realized for the cosine-Gauss beam according to [15]
(bottom), and the generated beam from that NFH. (c) Simulated (top left) and measured (bottom left) cosine-Gauss beam and their
corresponding cross sections (right) according to [75]. Reproduced with permission [11,15,75].

the signal. The binary encoding utilizes the Fourier rela-
tion found between the longitudinal thickness modulation
pattern t(z) and the wave-number distribution supported by
the hologram. An equation similar to Eq. (5) can be de-
rived, but this time the modulation is along the propagation
coordinatez, whereas earlier in Eq. (5), the modulation was
along the transverse coordinate y [16]:

t(z) = h0

2

(
1 + sign

{
cos

[
2π

�
z + 
(z)

]
− cos [πq (z)]

})
,

(8)

where h0 is the ridge height and q(z) is the amplitude mod-
ulation of the duty cycle, defined as q(z) ≡ sin−1[A(z)]/π .
Illuminating this hologram with a broadband, relatively pla-
nar beam with a central wavelength obeying Eq. (3), with
kG = 2π/�, will launch an SPP wave having the complex-
field spectrum represented by the Fourier transform
(Fig. 22):

U (k − kG) =
∫

A (z) exp [i
 (z)] exp (−ikz) dz. (9)
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Figure 20 Measurements of (a) a regular, (b) fixed intensity, and (c) linearly growing intensity plasmonic cosine-Gauss beam. (orange
arrow represents the direction of propagation). (d)–(f) Averaged intensity behavior exhibited by the central lobe of each beam (blue/red
curves), respectively. The Black line represents the theoretical plasmonic decay rate. Reproduced with permission [76].

We note that this spectrum contains not only an am-
plitude term, for efficiently launching or eliminating cer-
tain frequencies, but it also contains a phase term, unlike
any previous method. This phase term may open up excit-
ing opportunities for research in interference and temporal
shaping of SPP waves. The generation of plasmonic broad-
band excitation, in the form of a HG(3,0) in its spectrum, is
presented in Fig. 22c. We note that simultaneous spectral-
and spatial-shaping holograms, having 
(y, z) and q(y, z)
where z and y are longitudinal and transverse coordinates,
respectively, are certainly possible under certain conditions
[16].

The ability to control the energy spectrum of the excited
SPP could be used for light manipulation on a chip, where
ultrashort pulses can couple to SPPs while adding/removing
chirp, or splitting a single pulse into several pulses, creating
a pulse train.

The encoding of a spectral NFH employs two criteria
that ensure proper sampling along both the spectral dimen-

sion, represented by k0 (or λ0 ≡ 2π/k0), and the SPP propa-
gation dimension z [81]. The first is a sufficiently large sepa-
ration of the different grating orders, yielding �k < 2kc/3,
where �k is the bandwidth of the desired spectral response.
The second criterion deals with diminishing the effect of
the finite longitudinal resolutiondz, which distorts the shape
unless �k � 2π/dz.

A different fundamental limitation is represented by
the trade-off between the efficiency, or length in the z-
axis, and the bandwidth of the shaped SPP. This stems
from the Fourier relation between the hologram modu-
lation t(z) (Eq. (6)) and the spectral coupling efficiency
|U (k − kG)2| (Eq. (7)). As an intuitive example, con-
sider a uniform square grating having N cycles. When
N is very large e.g. N = 1000, then the excited SPP
results from the constructive interference of N scattered
waves, resulting in a very high efficiency for a very nar-
row wave-number spectrum. By contrast, for N = 1, this
ridge could couple an extremely wide-band SPP, but the
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Figure 21 (a) Measurements of
several kinds of plasmonic Bessel-
like beams. (b) Comparison be-
tween the measured 1D Bessel-
like, the calculated 1D Bessel-like,
the exact 1D Bessel and the cosine-
Gauss beam profiles according
to [79]. (c) Generation of J0(y )
and J1(y ) 1D Bessel-like plasmonic
beams (top). The inset shows a
regular Gaussian plasmon, and the
bottom shows the relevant mea-
sured and theoretical cross sec-
tions. (d) Generation of an ex-
act 1D Bessel plasmon using a
plasmonic NFH (top), together with
three cross-sections along its prop-
agation according to [76]. Repro-
duced with permission [76,79,80].

efficiency is impaired, as no constructive interference takes
place.

9. Summary and outlook

In this manuscript we reviewed the history and develop-
ment of surface-plasmon wavefront and spectral shaping,
from the early stages of SPP excitations, to the most recent
advanced plasmonic near-field holography. We presented
several approaches that have been used to enable the con-
trol of the plasmonic wavefront, both nonholographic and
holography-based methods, with a focus on binary plas-
monic NHF. We showed that these can be used to gener-
ate conceptually any arbitrary plasmonic beam and even

to compensate for plasmonic losses. We believe that the
advancements in this field, providing higher control over
the plasmonic-wave properties, are crucial for the realiza-
tion of new applications in plasmonics, and towards the
commercialization of plasmonics in the nanotechnology
industry. Moreover, although surface-plasmons are by def-
inition near-field waves, the desire to control the near-field
properties of other types of waves has drawn considerable
attention in recent years. For example, shaping the nonlin-
ear near-file emitted from nanostructures [82], near-field
nonlinear on-axis and volume holography at the second
harmonic [83,84], acoustic near-field holography [85], mi-
crowave near-field holography [86], and more [87–89]. The
methods and approaches presented in this manuscript may
be of interest and applications to these waves, and others,
as well.
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Figure 22 Launching a spectrally tailored plasmonic wave using a holographic grating: (a) the experimental setup and (b) an illustration
for a holographic coupling grating (left) designed according to Eq. (8). (c) Plasmonic decoupled spectra for the HG(3,0) shape. (d) The
measured far-field light diffraction from the NFH showing the fabricated NFH in k-space. Reproduced with permission [16].
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