
Dislocation Parity Effects in Crystals with Quadratic Nonlinear Response

Shani Sharabi,1,* Noa Voloch-Bloch,1 Irit Juwiler,2 and Ady Arie1
1Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel

2Department of Electrical and Electronics Engineering, Sami Shamoon College of Engineering, Ashdod 77245, Israel
(Received 9 August 2013; published 3 February 2014)

The effect of edge topological dislocations on the phase matching spectrum of quadratic nonlinear
photonic crystals was studied theoretically and experimentally. We have found that the parity of the
dislocation’s topological charge governs the transfer of energy between an input wave and its second
harmonic. A dislocation with an odd topological charge nulls the efficiency of the otherwise optimal phase
matched wavelength, whereas high conversion is now achieved at new wavelengths that exhibited low
efficiency without the dislocation. However, when the topological charge is an even number, the dislocation
has a negligible effect on the efficiency curve. This effect is observed in periodically poled crystals having a
single peak in the phase matching spectrum, as well as in phase-reversed and quasiperiodic nonlinear
photonic crystals that are characterized by multiple efficiency peaks, where a dimple is imprinted on each
spectral peak.
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Dislocations in crystals and their effects on the properties
of materials have been studied extensively in the past.
When an acoustic wave, an electron wave, or an optical
wave travels through a dislocation in a crystal, its effect can
be imprinted on the wave front. For example, when an
ultrasound pulse is reflected from a rough surface, the
scattered wave train contains dislocations [1]. The medium
which scatters that wave may exhibit nonlinear response,
and in this case scattered waves at harmonics of the input
frequency can be observed. In this Letter we study the
effect of a dislocation on the harmonically scattered wave.
We concentrate on a scattering medium with quadratic
nonlinearity, and examine the effect of the topological
dislocation on the efficiency of generation of second
harmonic radiation. Dislocations were studied so far in
optical structures that exhibited a different type of non-
linearity—photorefractive nonlinearity [2–4]—but in that
case there are only waves at a single frequency.
Recently, dislocations were introduced into quadratic

nonlinear photonic crystals, i.e., crystals in which the
quadratic nonlinear coefficient is modulated in an ordered
fashion [5–8]. These dislocations can be divided into two
different categories: continuous defects which are present
along the entire crystal axis [5,6] and local defects [7,8].
The continuous defects have been studied in several
configurations of the periodic grating, including tilt, stair,
and well dislocations [5,6]. Local defects were studied by
varying the thickness of a single domain in the middle of a
periodic grating [7]. Another type of local defect is edge
dislocation. In this case, the second order nonlinear
coefficient has a fork-shaped form and the dislocation is
characterized by the topological charge, which is the
difference between the number of modulation cycles of

the nonlinearity with and without the dislocation. By
sending a pump beam transversely to the plane of the
dislocation, a vortex beam was generated at the second
harmonic (SH), whose orbital angular momentum was
determined by the crystal [8].
Here we study for the first time a different case, in which

the pump beam travels longitudinally, in the plane of the
dislocation. This configuration is commonly used for
efficient conversion of a fundamental pump wave to its
second harmonic: Owing to dispersion, there is an inherent
phase mismatch between the two waves, but the missing
momentum can be provided by the nonlinear crystal
through quasiphase matching [9,10]. In this case efficient
conversion at a certain wavelength is obtained by periodi-
cally modulating the sign of the nonlinear coefficient. This
concept can be further extended by methods such as phase
reversal [11] or quasiperiodic modulation [12,13] that can
simultaneously phase match several different processes.
Here we show that when a dislocation is added, the phase
matching spectrum changes dramatically: Specifically,
when a dislocation with an odd topological charge is
introduced, the conversion efficiency at the otherwise phase
matched wavelength drops to nearly zero. Moreover,
optimal conversion is achieved at new wavelengths, which
exhibit low efficiency without the dislocation. This behav-
ior is observed not only in periodically poled crystals, but
also in quasiperiodic nonlinear photonic crystals, where a
dip is imprinted on each spectral peak. Surprisingly, none
of these changes in the phase matching spectrum occur for
dislocations with even topological charge.
The second-order nonlinearity susceptibility of a

periodic structure with an edge dislocation can be
written as
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χð2ÞðX; YÞ ¼ 2dijsgn½cosð2πX=Λþ lφÞ�; (1)

where dij is an element of the quadratic susceptibility χð2Þ
tensor, Λ is the quasiphase matching modulation period, l is
an integer number that represents the topological charge of
the dislocation, and φ ¼ arctanðX=YÞ is the azimuthal
angle between the propagation direction (X axis of the
crystal) and one of its perpendicular directions (Y axis).
Note that when l ¼ 0 (i.e., no dislocation) a simple periodic
modulation is obtained.
The nonlinear coupling between the fundamental and

second harmonic waves is described by a set of two
coupled-wave equations. Under the assumption of a slowly
varying envelope for the fundamental and SH beams of Aω

and A2ω respectively, these equations are

∂Aω
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where kω, k2ω are the wave vectors of the fundamental and
SH waves, ω is the radial frequency of the fundamental
wave, and Δk ¼ 2kω − k2ω is the phase mismatch. Here we
suppose that the nonlinear coupling is weak; hence, the
pump intensity is assumed to be constant and therefore we
consider only the second equation which describes the
evolution of the SH beam.
We have prepared several different crystals with non-

linear modulation patterns that include an edge disloca-
tion by electric field poling of stoichiometric lithium
tantalite (SLT); see the Supplemental Material [14] for
the fabrication details. The crystal surfaces were then
selectively etched in order to reveal the modulation of the
nonlinear coefficient. Figures 1(a)–1(d) illustrate some of
the fabricated patterns; they consist of periodic nonlinear
photonic crystals structures with a period of 21 μm and
dislocations corresponding to topological charges of
l ¼ 1, 2, 3, and 11.
The nonlinear conversion efficiency of these crystals was

measured using the experimental setup shown in Fig. 2.
The setup is described in the Supplemental Material [14].
Measurement of the four periodically poled crystals with

edge dislocations are shown in Figs. 1(e)–1(h), and are
compared to numerical simulation based on a split-step
beam propagation code [15], and using the Sellmeier
equation of [16]. Whereas a periodically poled crystal
exhibits a central peak [its location is marked with an arrow
in Figs. 1(e)–1(h)], when a dislocation with an odd
topological charge is introduced, the conversion efficiency
curve changed dramatically. It now exhibits a dip in the

efficiency at the otherwise optimal phase matching wave-
length. Moreover, two new efficiency peaks now emerge,
located symmetrically below and above it. This phenome-
non is observed in the simulations, as well as in the
measurements. It is interesting to note that the efficiency
curve for the three different cases with odd topological
charge (of l ¼ 1, 3, and 11) has nearly the same shape. We
can conclude that the efficiency spectrum is nearly inde-
pendent of the topological charge, provided that this charge
is an odd number. However, as can be seen from Fig. 1(h),
there is a significant difference between dislocations with
odd charge and even charge. The conversion efficiency
curve of periodic structure with topological charges of
l ¼ 2 has the same central peak as that of a structure

FIG. 1 (color online). Periodic structures with edge disloca-
tions. (a)–(d) Microscope pictures of the crystals. (e)–(h) Com-
parisons between measured (red dots) and simulated (blue line)
results. The green arrows mark the optimal phase matching
wavelength without dislocation.
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without the dislocation. We verified by numerical simu-
lations that the same shape is also obtained with higher
even values of the topological charge.
In order to compare between the measurement and

simulation in Figs. 1(e)–1(h), we had to shift down the
simulation curve by ∼6 nm. We assume that this wave-
length shift is caused by inaccuracies in the Sellmeier
coefficient and the crystal operating temperature. The
highest measured second harmonic power of 250 nW
was obtained at a wavelength of ∼1543 nm with a pump
power of 25 mW in the l ¼ 2 case, but similar second
harmonic power levels were measured for the crystals with
odd dislocations. The measured power is lower by a factor
of ∼3 with respect to numerical simulation for parameters
that are identical to those of the experiment. The difference
is probably caused by deviations of the electric-field poled
crystal from the designed nonlinear modulation pattern.
The difference between even and odd dislocations can be

understood by examining Eq. (1), the expression for the
second-order nonlinearity susceptibility. Near the center
of the crystal (X ≈ 0), the nonlinear coefficients in the
upper and lower parts of the crystal for Z polarized pump
and SH waves are described by d33sgn½cosð2πX=ΛÞ�,
d33sgn½cosð2πX=Λ� lπÞ�, respectively. Hence, for odd l
the nonlinearity of the upper part has opposite sign with
respect to the lower part, and therefore by integrating over
the entire interaction length we obtain destructive interfer-
ence for the wavelength which was phase matched without
the dislocation. However, when the topological charge l is
even, the upper and lower parts of the crystal have the same
sign, and therefore we obtain constructive interference.
This explains why the efficiency drops to zero at the
originally phase matched wavelength only in odd disloca-
tion structures. It is interesting to note that the effect of the
localized dislocation is still observed at the exit of the
crystal, where the periodic modulation pattern is almost
fully recovered. Another way to understand these results is
based on the two-dimensional Fourier transform relation
between the structure and the second harmonic wave
[17,18], as shown in the Supplemental Material [14].
The parity dependence is a property of the Fourier

transform of the structure itself. It is therefore a universal
result that can be observed even without a nonlinear
response of the medium: Similar parity dependence would
occur in every system in which the scattered field depends
on the Fourier transform of the structure.
In the case of odd topological charge, two new efficiency

peaks were formed. The nonlinear process for these peaks
is not perfectly phase matched and depends on the
interaction length. Without the dislocation the second
harmonic power rises till the center of the crystal, and
then, owing to the phase mismatch, the energy flows back
to the fundamental wave and the second harmonic power
drops to nearly zero at the exit of the crystal. However, the
dislocation disturbs this otherwise destructive interference
process near the central part of the crystal, and as a result a
significant power of the second harmonic is obtained at
the exit of the dislocated crystal. These phenomena are
evident in Figs. 3(a)–3(c) which show the evolution of the
generated SH along the crystal. As can be seen in Fig. 3(a),
the SH beam power (at the optimal phase matched wave-
length without the dislocation) monotonically increases at
the first half of the crystal, but at the second half of the
crystal, the beam decays to zero owing to the above-
mentioned destructive interference effect. However, in the
case of even topological charge (l ¼ 2), Fig. 3b, we get
constructive buildup of the SH beam along the entire
crystal, despite the presence of the dislocation at the center.
We also examined one of the two new peak wavelengths
(1549 nm) for the l ¼ 1 case, as shown in Fig. 3(c). In this
case the dislocation enables us to obtain a constructive
buildup of the SH beam at the exit of the crystal.
The effect of dislocations is not limited to periodic

structures. Here we have also introduced dislocations into

FIG. 2 (color online). The experimental setup.

FIG. 3 (color online). The evolution of the generated SH
intensity along the dislocated periodic structures for maximum
(1550 nm) and minimum (1549 nm) wavelengths. (a) Destruction
of SH intensity at 1550 nm for odd topological charge l ¼ 1.
(b) Constructive buildup of SH intensity at 1550 nm for even
topological charge l ¼ 2. (c) Recovery of the SH intensity at
1549 nm for odd topological charge l ¼ 1.
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twotypesofaperiodicstructures,namely,phasereversed[11]
structures and quasiperiodic [10,12,13] structures. These
structures (without the dislocation) are commonly used to
simultaneously phase match several nonlinear processes.
The phase reversed structure is obtained by multiplying

two periodic binary structures, as shown schematically in
Fig. 4(a). As the name implies, a change in sign of the longer
periodicity (ΛL) structure reverses the phase of the shorter
periodicity (ΛS) pattern. The Fourier spectrum of this
structure exhibits two dominant peaks at 2π=ΛS � 2π=ΛL,
as seen in Fig. 4(a). Our designwas based on a structurewith
ΛS ¼ 21 μm, ΛL ¼ 100ΛS, which can efficiently phase
match two different pump wavelengths at 1.54 and
1.556 μm. Edge dislocations with topological charges of
l ¼ 1, 3 were inserted into this structure, and SLT crystals
were poled according to these designed patterns. The
measured and simulated second harmonic spectra are shown
in Figs. 4(c) and 4(d). The dislocation splits each one of the
two peaks in the efficiency curve into two separate peaks. As
in the case of a periodic structure, dips in the efficiency are
observed at the otherwise two optimal phase matching
wavelengths.
Another method to simultaneously phase match several

processes is based on quasiperiodic modulation [12,13] of

the nonlinear coefficient. Several studies were made in
recent years on the observation and characterization of
dislocations in quasicrystals [2,3]. Here we consider for the
first time dislocations in quadratic nonlinear quasicrystals.
For designing the quasiperiodic structure we applied de
Bruijn’s [19] dual grid method. In our case, we would like
to phase match two second harmonic generation processes
with pump wavelengths of 1540 and 1560 nm. By applying
a one dimensional version of the dual grid method we
obtain a quasiperiodic sequence of two building blocks
labeled A and B with lengths of 10.5 and 11.0 μm, as
illustrated in Fig. 4(b). This one-dimensional quasicrystal
has the desired wave vectors in its reciprocal lattice, as
shown in Fig. 4(b). A nonlinear quasiperiodic crystal is
obtained by modulating the nonlinear coefficient in the A
and B blocks to be negative and positive, respectively. An
edge dislocation with l ¼ 1 was then added to this
structure. The designed structure was realized by electric
field poling in SLT. Figure 4(e) shows the measured and
simulated phase matching spectrum. As in the previous
cases, we got destructive interference for the otherwise
phase matched wavelengths that caused each one of the two
main lobes of the efficiency curve to split into two lobes.
We simulated the two non-periodic structures with an

even dislocation, having a topological charge of l ¼ 2. The
same parity effect was observed here; i.e., when the charge
is even the efficiency curve is practically unchanged.
In conclusion, we studied the nonlinear scattering

process within various nonlinear photonic crystals that
have dislocations. We examined periodic, quasiperiodic,
and phase reversal structures and found that oddly charged
dislocation which was added to these structures stamps its
fingerprint in every efficient conversion SH wavelengths of
the original structures. The effect of the dislocation is still
observed after propagating a very long distance in the
crystal (e.g., the light exits the crystal 238 unit cells after
the dislocation in the periodic crystal, and the periodic
modulation pattern is almost fully recovered). The odd
dislocation caused destructive interference in these wave-
lengths, and the appearance of new efficient conversion SH
wavelengths. We also observed that in the case of dis-
location with even topological charge, the efficient con-
version curve stays the same as in the structure without the
dislocation. We note that there are very few known physical
systems that present such a clear dependence on parity. One
such textbook system is that of a quantum particle in a box,
in which the amplitude of the wave function is zero at the
center for all the even solutions and reaches its maximum
value for all the odd solutions.
The nonlinear photonic crystal provides a flexible plat-

form for studying the effects of dislocations in nonlinear
systems. A straightforward extension would be to study
the effect of dislocations in two-dimensional nonlinear
photonic crystals [20,21]. Moreover, whereas here we
considered only a single dislocation having an integer

FIG. 4 (color online). The phase reversal and quasiperiodic
structures. (a)–(b) Schematic diagram of the proposed structures
without the dislocation and the Fourier coefficients of the spatial
angular frequency. (c)–(e) Comparisons between measured (red
dots) and predicted (blue line) results. The green arrows mark the
optimal phase matching wavelengths without dislocation.
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value of its topological charge, it would be interesting to
study the cumulative effect of multiple dislocations as well
as the influence of fractional topological charge [22]. In
addition, while here we used rather low pump intensities, at
higher intensities the generated second harmonic wave will
be backconverted to the fundamental wave, as described in
Eq. (2). In such cases, we expect to observe the effect of
the dislocation on the input wave, despite the fact that
the dislocation occurs only for the quadratic nonlinear
function.
The effects we studied here are not limited only to optical

waves. We expect that similar behavior will be observed for
other types of waves that are nonlinearly scattered from a
dislocation, such as fluid waves [23], acoustic waves [24],
matter waves, or electromagnetic waves at different spectral
ranges. Furthermore, since the scattered wave is determined
by the Fourier transform of the structure, we will observe
similar parity dependence in other systems that obey a
Fourier transform relation between the scattering structure
and the scattered wave. Finally, whereas here we consid-
ered quadratic nonlinearities, it would be interesting to
examine the effect of dislocations on materials that exhibit
higher order nonlinearities, and, in particular, third order
nonlinearity.
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