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Abstract: It is shown that optical vortex beams can be generated from a
non-vortex fundamental beam by an optical frequency conversion process
taking place within a twisted nonlinear photonic crystal. This is done
without any first-order (linear) refractive optics. Through such a proposed
structure, all-optical switching of vortices with different helicities is made
possible, as well as the simultaneous application of counter-rotating vortex
beams of different frequencies.
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Optical vortices are light waves possessing a phase singularity[1]. The Poynting vector of such
beams contains an azimuthal component, causing energy flow around the singularity[2] and a
ring-shaped intensity profile. The electric field of a vortex beam can be written in cylindrical
coordinates as E(r,z,θ ) = u(r,z)eilθ e−ikz where k = kẑ is the beam’s wave vector. l is called
the topological charge, indicating, for integer values, phase fronts which are l intertwined he-
lical surfaces and an l h̄ orbital angular momentum carried by each of the beam’s photons. For
non-integer values the resulting beam contains a chain of alternating charge vortices[3]. Var-
ied applications are found for vortex beams, for example, optical tweezers[4] and actuators for
micro-electro-mechanical systems[5], multi-dimensional quantum entanglement[6] and extra-
solar planet detection[7]. Although vortex beams occur naturally as higher order modes of laser
cavities and optical fibers, beam shaping techniques are needed to control their properties. The
current solutions are based on linear optics by employing diffractive optical elements[2], spatial
light modulators[8] and spiral phase plates[9]. We show that vortex beams can also be created
by using nonlinear optics, specifically by frequency conversion processes in which one or two
beams with different frequencies give rise to a nonlinear material polarization term. We would
like to stress that extensive work went into the research of vortex beams interacting within a
nonlinear medium[10, 11] where a vortex beam could be generated by another (already-present)
vortex beam of a different frequency. However, we show that using a special-tailored nonlinear
medium a vortex beam can be generated from a fundamental beam that contains no singularity.

Let us consider the prototype process for three wave mixing - second harmonic generation
within a three dimensional nonlinear material. For quasi-plane waves under the slowly varying
envelope approximation, were all the interacting beams are collinear along z, the evolution of
the second-harmonic field amplitude is given in M.K.S units by:

k2ω ∂E2ω(r)
∂ z

=
−2iω2

c2 (Eω(r))2de f f ,i j(r)e−iΔkz, (1)

where E2ω and Eω are the second harmonic and fundamental (pump) beam amplitudes respec-
tively, k2ω is the second harmonic wave vector, ω is the pump beam angular frequency, c is the
speed of light, de f f ,i j is the space-dependent coupling component of the nonlinear susceptibility
tensor and Δk = k2ω −2kω is the phase mismatch vector of the interacting waves. Collinearity
implies: kω = kω ẑ, k2ω = k2ω ẑ, and Δk = Δkẑ.

Assuming an undepleted pump beam with a constant cross-section: E ω (r)= Eω(z = 0)= Eω

(as for example given by a plane wave or approximated by a Gaussian beam with a wide enough
waist) and a binary modulation for the nonlinear coupling coefficient: d e f f ,i j(r) = di jg(r) with
g(r) = ±1, we can integrate the last equation over an interaction length L to get:

E2ω(z = L) = κ
∫ L

0
g(r)e−iΔkzdz, (2)
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where κ =−iω(Eω)2di j/cn2ωL. We further require that the binary modulation of the nonlinear
coupling coefficient is of the form g(r) = g(z+ f (x,y)), in which case the transverse function
f (x,y) acts as a translation factor under the one-dimensional Fourier transform F{g(z)} =
G(Δk). If a phase matching condition is satisfied, resulting in a significant build-up of the
second harmonic amplitude, G(Δk) behaves as a Dirac delta function for an infinite integration
range. In this case:

E2ω(z = L) = κGΔke
i f (x,y)Δk, (3)

where GΔk is just the Fourier coefficient at frequency Δk in the Fourier series expansion of
the function g(z). For f (x,y) = lθ/Δk the generated second harmonic is a vortex beam with a
topological charge of value l. The nonlinear coefficient modulation yielding the greatest effi-
ciency is the 50% duty cycle rectangular wave with period equal to 2πm/Δk (m being the phase
matching order) [12] which is modified in our case to be:

g(r) = sign{cos[Δk/m(z+ lθ/Δk)]}, (4)

where sign(x) = x/|x| for nonzero values (0 otherwise).
The axial component of this structure function is responsible to the breaking of an oth-

erwise infinitesimal translational symmetry into a finite translational symmetry. The conse-
quence is that momentum need to be conserved only to some discrete quantities, known as
quasi-momenta. This is essentially regular quasi-phase-matching[13, 12, 14]. Similarly, the
transverse component of the structure function breaks the infinitesimal rotational symmetry, so
angular momentum needs to be conserved up to some quasi-angular momentum related to the
structure. Put otherwise, the outcome of a nonlinear wave mixing in such a structured material
can result in a radiation which possesses orbital angular momentum which is different than the
sum of angular momenta of the other beams (unlike with a rotationally invariant setup[15]).
This allows the generation of a vortex beam from a non-vortex beam. All of the above symme-
try considerations only apply when all the beams are collinear along z. Note that quasi-angular
momentum is naturally also used in linear optics as with the optical vortex lens[16, 9] and us-
ing a twisted optical fiber[17]. Also, planar transverse modulations of quasi-phase-matching
structures were already used for different beam manipulations[18, 19] but not for generating a
vortex beam from a non-vortex beam.

To verify the above result we used numerical simulations employing split step Fourier
method[20], where a non-depleted Gaussian pump beam was used as an input to a nonlinear
photonic crystal whose nonlinear coefficient is modulated according to Eq. 4. The results are
depicted in Fig. 1. In each panel a specific spatial modulation is represented by giving the three
dimensional shape of the positively modulated nonlinear coefficient, where the background is
of the opposite polarization. The relevant scale along the propagation direction is indicated by
the coherence length lc = π/Δk. The simulation was carried over an interaction length of 600 · l c

for a Gaussian pump beam with a Rayleigh range of about z 0 � 2800 · lc . The linear (first-order)
dielectric coefficient is assumed to be spatially independent. Along with the nonlinear modu-
lation the resulting second-harmonic normalized field amplitude and field phase are presented.
Panels (a)− (c) exhibit creation of vortex beams with integer topological charge of l = 1,2 and
l = 5 respectively. In panel (d) a vortex beam with a fractional topological charge of l = 1.5 is
created. For all of these cases the phase matching order is the fundamental m = 1. It is interest-
ing to note that unlike with phase plates[21], generation of vortex beams with larger topological
charge is actually easier in our case. For example when the topological charge is l = 3 but the
phase matching order is also m = 3 we get a rescaling of the basic l = 1 and m = 1 structure as
can be seen in panel (e). The penalty is a reduced efficiency in the generated field with a factor
of (1/m)2[12]. We also note that to employ this rescaling to even orders we should use a pattern
with a different duty cycle than the 50% example (in which only the odd orders are needed to
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expand the rectangular wave). If the beam waist is not wide enough (that is - the interaction
length is larger than the Rayleigh range) the phase pattern is modified to include a quadratic
radial contribution from the Gaussian pump θ → θ +αr 2 (where α is some constant) as can be
seen in panel ( f ) where a Rayleigh range of z0 � 20 · lc was used (while the interaction length
was still 600 · lc). Note that a rigorous treatment that takes into account the nature of focused
beams results in a different evolution equation than the one we started with[22].

Fig. 1. Simulations of positively modulated nonlinear coefficient (left in each panel, while
the background represents negatively modulated nonlinear coefficient) and the generated
second harmonic amplitude (top right) and phase (bottom right) for a Gaussian pump beam.
The linear coefficient (index of refraction) is assumed to be homogeneous. lc is the coher-
ence length along the fields propagation direction. m is the phase-matching order. l is the
topological charge. (a) m = 1, l = 1 (b) m = 1, l = 2 (c) m = 1, l = 5 (d) m = 1, l = 1.5 (e)
m = 3, l = 3 (f) m = 1, l = 1 with a narrow beam waist.

Using three-wave mixing to create vortex beams suggests all-optical switching schemes in-
volving some parameter of the vortex. For example, let us consider an interaction involving
three different frequencies such that ω3 = ω1 +ω2. Given a device to phase-match a generation
of a vortex beam at the sum frequency of ω3 where the input beams are at frequencies of ω1

and ω2 it would also phase-match a generation of the difference frequency ω 1 where the input
beams are at frequencies of ω3 and ω2. However, the resulting helicity of the vortex beam would
be different for the two cases. This is due to the different dependencies of the field amplitudes
evolution on the phase mismatch value Δk = k1 + k2 −k3 for the two cases. Whereas for the
sum-frequency generation process the phase mismatch term appears as e−iΔk·r (as in Eq. 1) for
the difference-frequency generation process it appears as e +iΔk·r. Integrating the equations and
using the same spatial modulation of the nonlinear coefficient (g(r)= g(z+ f (x,y)) would yield
a phase of ei f (x,y)Δk for the sum-frequency process but e−i f (x,y)Δk for the difference frequency
process. This way optical helicity switching is achieved (the vortex frequency also changes
unless we use two different processes with the same output frequency and the same phase mis-
match value). Another option is given by concatenating two nonlinear crystals - each with a
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spatial modulation for phase matching a different process, for example - two second-harmonic
generation processes of ω1 + ω1 → 2ω1 and ω2 + ω2 → 2ω2 . If the difference between the
two phase-mismatch values is much larger than π/L (where L is shortest crystal length) then
using as input, say ω1, would generate a vortex beam at frequency 2ω 1 through one of the crys-
tals while the other one would have only negligible effect. Thus this device is able to optically
switch between vortex beams of different frequencies. Such a device, when pumped simulta-
neously with ω1 and ω2 would yield two vortex beams (at different frequencies) with the same
helicity or with an opposing helicity depending on the helicities of the poling patterns.

A possible solution for constructing such devices is by electric-field poling of ferroelectric
materials into thin χ (2)-modulated planar plates and stacking them together. The stacking could
be made in the material polarization direction, as depicted in Fig. 2.a (an X-sampled structure).
This way we may assume that the pump field is linearly polarized in the same direction as
the material polarization, utilizing the largest available nonlinear tensor component d 33, char-
acteristic of ferroelectric materials such as LiNbO3 or KTiOPO4. Another option would be to
stack thin ferroelectric plates at the beams propagation direction (a Z-sampled structure). For a
topological charge which is equal to the phase matching order m = l, all the plates would have
the same poling pattern - where half of the plain is positively poled and they would be stacked
together with a relative angular shift as depicted in Fig. 2.b. Here, however, the material and
field polarizations would be perpendicular, utilizing the tensor component d 22 (which exists,
for example, in LiNbO3). Both options would be challenging to implement considering that the
typical coherence length in the optical regime is about 10μm and a typical beam waist is about
50μm, meaning that each plate should have a thickness of just a few microns. However, a possi-
ble strategy could be bonding at each construction stage a relatively thick plate and polishing it
down to an adequate thickness, as was recently demonstrated for a thickness of about 6μm[23].

Fig. 2. Planar fabrication sampling for a vortex-generating ferroelectric nonlinear photonic
crystal. The insets show a typical plate. (a) Stacking plates at the material polarization
direction. (b) Stacking plates at the beams propagation direction.

To asses the influence of such fabrication sampling over an ideal smooth structure we can use
an estimation factor (η) such as the cross correlation between the normalized (intensity wise)
field to a normalized field of an ideal vortex beam (generated through a smooth structure).
Numerical simulations show that decreasing sampling resolution, for an X-sampled structure,
reduces η almost linearly from a perfect value of 1 to 0.8 for a sampling period of about 40%
of the beam radius (for a Rayleigh range of about z 0 � 2800 · lc). The decreasing quality for a
Z-sampled structure exhibit high η value around 0.98 for sampling periods up to a coherence
length. However this quality behaves much more erratically as the sampling period is varied,
while for sampling periods which are an integer division of twice the coherence length the
generated beam is similar to ones generated by a step vortex lens[16]. To see this a closed
analytical form can be derived for the generated field due to a sampled structure by using a
straight-forward sampling theorem. For the Z-sampled structure the nonlinear coupling coeffi-
cient is of the form:

gs(r) =
(
g(r) ·∑δ (z−nΔz)

)⊗ rect(z/Δz) , (5)
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Fig. 3. Simulations of second harmonic amplitude (top) and phase (bottom) for a Gaussian
pump beam within a Z-sampled structure. The phase matching order and topological charge
are both 1. The sampling period is Δz = (2π/Δk)/q. (a) q = 3 (b) q = 4 (c) q=14.

where g(r) is given by Eq. 4, Δz is the sampling period in the z direction, ⊗ represents convo-
lution and rect(z) = {1, |z| < 1/2; 0,else}. To simplify the analysis we examine an interaction
over an idealized infinite length L → ∞ to generate a vortex beam with a topological charge of
l = 1 and phase matching order of m = 1. We are interested at the outcome for sampling periods
of the type Δz = 2lc

q = 2π
qΔk where q is an integer. In this case, using Eq. 2 (where gs(r) replaces

g(r)), Eq. 4 and Eq. 5, it can be shown that:

E2ω ∝
∞

∑
n=−∞

sinc

(
1−nq

2

)
eiθ(1−nq), (6)

where sinc(x) = sin(πx)/(πx). Such an interference sequence accounts for a q-steps phase
pattern for an even q and for a 2q-steps phase pattern for an odd q value. This in turn leads to
a q-fold or a 2q-fold rotational symmetry for the field’s amplitude. For large values of q the
resulting field is very close to a vortex beam generated through a smooth structure, while for
small values of q the small rotational symmetries lead to a shaped beam. These can be seen in
Fig. 3 exhibiting the results of a simulation carried within a Z-sampled structure for different
values of q. The simulation was carried over an interaction length of 600 · l c for a Gaussian
pump beam with a Rayleigh range of about z0 � 2800 · lc.
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